Math, asked by vamsikrishna2311, 1 year ago

11.
If the roots of x3 + 3ax? + 3bx +C =0 are in H.P. then
1) 2b^2 = c(3ab -c)
2) 2b^3= c(3ab -c)
3) 2b^3 = c² (3ab -c) 4) 2b = c2 (3ab -c)​

Answers

Answered by swethassynergy
0

Correct-Question

If the roots of x^{3} +3ax^{2} +3bx+c=0 are in H.P. then

1) 2b^2 = c(3ab -c)

2) 2b^3= c(3ab -c)

3) 2b^3 = c^{2}  (3ab -c) 4) 2b = c2 (3ab -c)

Answer:

If the roots ofx^{3} +3ax^{2} +3bx+c=0 are in H.P. then 2b^{3} =c(3ab-c) and option (2) is correct.

Step-by-step explanation:

Given:

The roots of polynomial  x^{3} +3ax^{2} +3bx+c=0 are in H.P.

To Find:

If the roots of x^{3} +3ax^{2}  +3bx+c=0 are in H.P. then find out relation between a,b and c.

Solution:

As given-the roots of polynomial  x^{3} +3ax^{2} +3bx+c=0 are in H.P.

Let roots of polynomial are r,s  and t.

r.s and t are in H.P.

Therefore,  s=\frac{2rt}{r+t}

sr+st=2rt

adding rt on both side of equation.

sr+st+rt=3rt  ------------- equation no.01.

Using the theory of polynomials, in polynomial x^{3} +3ax^{2} +3bx+c=0.

rst=\frac{-c}{1} \\rst=-c --------equation no.02.

rs+st+rt=\frac{3b}{1} \\\\rs+st+rt =3b  ----------- equation no.03.

Putting value of rs+st+tr from equation no.01 to equation no.03. We get.

3rt= 3b

rt=b -------------- equation no.04

Putting the value of b from equation no.04  to equation no.02. We get.

b\times s= - c

s=\frac{-c}{b}

Since  s is a root of the equation x^{3} +3ax^{2} +3bx+c=0.

ence,we can substitute the value of s in the equation.

(\frac{-c}{b} )^{3} +3a(\frac{-c}{b}})^{2}   +3bc+c=0

\frac{-c^{3} }{b^{3} } +\frac{3ac^{2} }{b^{2} } -\frac{3bc}{b}+c=0}

\frac{-c^{3}+3abc^{2}-3b^{3}c+cb^{3}    }{b^{3} }  =0

-c^{3}+3abc^{2}-3b^{3}c+cb^{3}      =0

-c^{3}+3abc^{2}-2b^{3}c      =0

Dividing by c on the both sides

-c^{2}+3abc-2b^{3}   =0

2b^{3}   =3abc-c^{2}

2b^{3}   = c(3ab-c)

Thus,If the roots ofx^{3} +3ax^{2} +3bx+c=0 are in H.P. then 2b^{3} =c(3ab-c) and option (2) is correct.

PROJECT CODE#SPJ3

Answered by ssanskriti1107
0

Answer:

If the roots of x^{3}  + 3a x^{2} + 3bx +c =0 are in H.P, then 2b^{3}=c(3ab -c) .

Step-by-step explanation:

Let the roots of the equation be \alpha, \beta and \gamma. Since they are in H.P,

\therefore  \beta=\frac{2\alpha\gamma}{\alpha+\gamma}

\implies \alpha \beta +\beta \gamma=2\alpha \gamma

\implies \alpha \beta +\beta \gamma+\alpha \gamma=3\alpha \gamma      .....(i)

We know, the product of roots : \alpha \beta \gamma=-c

\implies\alpha \gamma=\frac{-c}{\beta }        ....(ii)

Putting the value of \alpha\gamma from eq (ii) and eq (i)

\implies \alpha \beta +\beta \gamma+\alpha \gamma=3\frac{-c}{\beta }       ....(iii)

Also, sum of products :  \alpha \beta +\beta \gamma+\alpha \gamma=3b    ...(iv)

Comparing eq (iii) and eq (iv)

3b=-3\frac{c}{\beta }          

 \implies \beta =\frac{-c}{b}         .........(v)

Putting the value of \beta  from eq (v) in the given equation x^{3}  + 3a x^{2} + 3bx +c =0, we get

\frac{-c^{3} }{b^{3} } +\frac{3ac^{2} }{b^{2} } -3c+c=0\\\\\implies -c^{3}+3abc^{2}=2cb^{3}\\\\\\\implies 2b^{3}=c(3ab -c)

Hence, if the roots of  x^{3}  + 3a x^{2} + 3bx +c =0 are in H.P, then 2b^{3}=c(3ab -c) .

#SPJ3

Similar questions