Math, asked by siddharthasinha6839, 11 months ago

(11) If theta
is an acute angle and tan theta = 8/15 find the value of sec theta + cosec theta.

Answers

Answered by BrainlyConqueror0901
151

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{sec\:\theta+cosec\:\theta=\frac{391}{120}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies tan\:\theta =  \frac{8}{15} \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies sec \: \theta+cosec\:\theta = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies tan \:  \theta =  \frac{8}{15}  \\  \\ \tt:  \implies  \frac{p}{b}   = \frac{8}{15}  \\  \\ \tt \circ \: p = 8 \\  \\  \tt \circ \: b = 15 \\  \\  \bold{Using \: Phythagoras \: theorem : } \\ \tt:  \implies   {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\ \tt:  \implies  {h}^{2}  =  {8}^{2}  +  {15}^{2}  \\  \\ \tt:  \implies  {h}^{2}  =  64 + 225 \\  \\ \tt:  \implies  {h}^{2} = 289 \\  \\ \tt:  \implies h  = \sqrt{289}  \\  \\  \green{\tt:  \implies h = 17} \\  \\  \bold{For \: finding \: value : } \\ \tt:  \implies sec \:  \theta + cosec \:  \theta  =  \frac{h}{b} +  \frac{h}{p}  \\  \\ \tt:  \implies sec \:  \theta + cosec \:  \theta =  \frac{17}{15}  +  \frac{17}{8}  \\  \\ \tt:  \implies sec \:  \theta + cosec \:  \theta =  \frac{136 + 255}{120}  \\  \\  \green{\tt:  \implies sec \:  \theta + cosec \:  \theta  =  \frac{391}{120} }

Answered by AdorableMe
256

\underline{\mathfrak{Given:-}}

\theta\texttt{ is an acute angle and tan}\theta = \sf{\frac{8}{15}. }

\underline{\mathfrak{To\ find:-}}

\texttt{The value of sec}\theta + \texttt{cosec}\theta.

\bold{\underline{\mathfrak{Solution:-}}}

\texttt{We know that tan}\sf{\theta}=\sf{\frac{perpendicular(p)}{base(b)}. }\\

\texttt{Applying Pythagoras theorem :-}\\\\\sf{p^2 + b^2 = h^2}\\\sf{\implies (8)^2+(15)^2=h^2}\\\sf{\implies 64+225=h^2}\\\sf{\implies h=\sqrt{289} }\\\sf{\implies h=17}

\texttt{Now, sec}\theta\ \sf{= \frac{hypotenuse(h)}{base(b)} }\\\\\texttt{cosec }\theta\ \sf{= \frac{hypotenuse(h)}{perpendicular(p)} }\\

\tt{sec\theta\ +\ cosec\theta}\\\\\tt{= \frac{17}{15}\ +\ \frac{17}{8}  }\\\\\tt{= \frac{136\ +\ 255}{120} }\\\\\boxed{\tt{=\frac{391}{120} }}

\boxed{\boxed{\boxed{\boxed{\boxed{\mathfrak{Hope\ this\ helps}}}}}}

Similar questions