Math, asked by praveengiridih09, 2 months ago

11. If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)); y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) & Find x ^ 2 + y ^ 2​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = \dfrac{ \sqrt{3} +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2} }

On rationalizing the denominator, we get

\rm :\longmapsto\:x = \dfrac{ \sqrt{3} +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2} }  \times \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }

\rm :\longmapsto\:x = \dfrac{(\sqrt{3} +  \sqrt{2})^{2}}{(\sqrt{3} -  \sqrt{2})( \sqrt{3}  +  \sqrt{2})}

We know that,

\underbrace{ \boxed{ \bf \:  {(x + y)}^{2}  =  {x}^{2} +  {y}^{2}  + 2xy}}

and

\underbrace{ \boxed{ \bf \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

Using, these Identities, we get

\rm :\longmapsto\:x = \dfrac{3 + 2 + 2 \times  \sqrt{3} \times  \sqrt{2}  }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2} )}^{2} }

\rm :\longmapsto\:x = \dfrac{5 + 2 \sqrt{6}  }{ 3 - 2 }

\rm :\longmapsto\:x = \dfrac{5 + 2 \sqrt{6}  }{ 1 }

\bf\implies \:x = 5 + 2 \sqrt{6}

Again, It is given that

\rm :\longmapsto\:y = \dfrac{ \sqrt{3}  -   \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }

On rationalizing the denominator, we get

\rm :\longmapsto\:y = \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  + \sqrt{2} }  \times \dfrac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} -   \sqrt{2} }

\rm :\longmapsto\:y = \dfrac{(\sqrt{3} - \sqrt{2})^{2}}{(\sqrt{3} -  \sqrt{2})( \sqrt{3}  +  \sqrt{2})}

\rm :\longmapsto\:y = \dfrac{3 + 2  -  2 \times  \sqrt{3} \times  \sqrt{2}  }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2} )}^{2} }

\rm :\longmapsto\:y = \dfrac{5  -  2 \sqrt{6}  }{ 3 - 2 }

\rm :\longmapsto\:y = \dfrac{5  -  2 \sqrt{6}  }{1 }

\bf\implies \:y = 5  -  2 \sqrt{6}

Now, Consider,

\rm :\longmapsto\: {x}^{2} +  {y}^{2}

\rm \:  =  \:  {(5 + 2 \sqrt{6})}^{2} +  {(5 - 2 \sqrt{6})}^{2}

We know,

\underbrace{ \boxed{ \bf \:  {(x + y)}^{2}  +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}

On applying this identity, we get

\rm \:  =  \: 2\bigg( {(5)}^{2} +  {(2 \sqrt{6} }^{2}) \bigg)

\rm \:  =  \: 2(25 + 24)

\rm \:  =  \: 2 \times 49

\rm \:  =  \: 98

Hence

\bf :\longmapsto\: {x}^{2} +  {y}^{2}  = 98

Similar questions