Math, asked by wahithaarif, 3 days ago

11. ii) RP is In a quadrilateral PQRS, RP bisects LR and RQ = RS. Prove that i) PQ = PS the perpendicular bisector of QS. R R Q S S. Р P P 12. In the figure L BCD =L ADC and L ACB= LBDA. Prove that AD=BC and LA=LB.


solve it​

Answers

Answered by darkkrishnandud212
0

Answer:

question 18, Laura found that the box is a little big to keep inside the locker. She realised the fact that a cubical box will exactly fit inside the locker. Find the smallest number by which 9000 must be divided so that the dimensions of the box form a perfect cube.

Answered by SANDHIVA1974
4

Answer:

Answer:

Given:

PQRS is a quadrilateral, diagonal PR bisects angle P and angle R.

To prove:

PQ = PS and RS = RQ.

Step-by-step explanation:

In ️triangle PQR & triangle ️PSR;

(A) angle QPR= angle RPR(since diagonal PR bisects angle P)

(S) Side PR=PR(common side)

(A) angle QRP= angle SRP(since diagonal PR bisects angle R)

therefore, triangle ️PQR is congruent to️ triangle PSR by ASA congruence rule.

=》side PQ= PS and RS = RQ.( by C.P.C.T.)

Hence proved.

Similar questions