Math, asked by siddhikasat86, 4 months ago

11. In a triangle, one the angle is
60°. The other two angles are in
the ratio 7:5. Find the two
angles.​

Answers

Answered by venkaiah5yarlagadda
0

Step-by-step explanation:

given <1=60

other two angle are 7x,5x

In triangle sum of all angles=180

60+7x+5x=180

12x=180-60

12x=120

x=120/12

x=10

7x=7×10=70

5x=5×10=50

Answered by Anonymous
9

\sf \pink{Given}\begin{cases}&amp;\sf{One\ angle\ of\ the\ triangle=\bf{60\degree.}} \\ \\ &amp;\sf{Ratio\:of\:other\:two\:angles=\bf{7:5.}}\end{cases} \\

To FinD:-

The two angles.

SolutioN:-

  • Let the other two angles be 7x, 5x.

We know that,

  • All angles in a triangle sum upto 180°.

According to the question,

 \\ :\normalsize\implies{\sf{7x+5x+60\degree=180\degree}}

 \\ :\normalsize\implies{\sf{12x=180\degree-60\degree}}

 \\ \quad:\normalsize\implies{\sf{12x=120\degree}}

 \\ \quad \ \ :\normalsize\implies{\sf{x=\dfrac{120}{12}}}

 \\ \qquad \ \ :\normalsize\implies{\sf{x=\cancel{\dfrac{120}{12}}}}

 \\ \qquad\quad\quad\normalsize\therefore\boxed{\mathfrak{\pink{x=10.}}} \\ \\

The angles are :

  1. 7x = 7 × 10 = 70°
  2. 5x = 5 × 10 = 50°

VerificatioN:-

 \\ :\normalsize\implies{\sf{70\degree+50\degree+60\degree=180\degree}}

 \\ \qquad:\normalsize\implies{\sf{180\degree=180\degree}}

 \\ \qquad\quad\quad\normalsize\therefore\boxed{\mathfrak{\pink{LHS=RHS.}}} \\ \\

  • Hence verified.

________________________________

The two angles are 70° and 50°.

Similar questions