Math, asked by kaveri253, 2 months ago

11) In AABC prove the following: (i) a sin A -b sin B = c sin (A-B)​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We know,

\tt\large\purple{From\:\:laws\:\:of\:\:sine:}

 \tt \blue{ \frac{sin( A )}{a}  =\frac{sin( B )}{b} = \frac{sin( C )}{c}  = k }  \\

 \tt \red{ \implies sin(A) = ka , \:  \: sin(B )  = bk \:  \:,  sin( C) = kc}

Now,

 \sf \:  \color{orange}a \: sin(A) - b \: sin(B)

 \sf \:  =  \color{orange}  \frac{sin(A)}{k} \cdot\: sin(A) - \frac{sin( B )}{k} \cdot \: sin(B) \\

 \sf \:  =  \color{orange} \frac{1}{k} \{  sin^{2} (A) - sin^{2} (B)  \}\\

 \sf \:  =  \color{orange} \frac{1}{k} ( sin (A) - sin (B)  )( sin (A)  +  sin (B)) \\

 \sf \:  =  \color{orange} \frac{c}{sin( C) }  \cdot2 cos \bigg( \frac{A + B}{2} \bigg)  sin \bigg( \frac{A  -  B}{2} \bigg) \cdot \: 2sin \bigg( \frac{A + B}{2} \bigg)  cos \bigg( \frac{A  -  B}{2} \bigg) \\

 \sf \:  =  \color{orange} \frac{c}{sin( C) }  \cdot2 sin \bigg( \frac{A + B}{2} \bigg)  cos \bigg( \frac{A + B}{2} \bigg) \cdot \: 2  sin \bigg( \frac{A  -  B}{2} \bigg)  cos \bigg( \frac{A  -  B}{2} \bigg) \\

 \sf \:  =  \color{orange} \frac{c}{sin( C) }  \cdot sin ( A + B ) \cdot \:   sin ( A  -  B) \\

 \sf \:  =  \color{orange} \frac{c}{sin( C) }  \cdot sin ( \pi - C ) \cdot \:   sin ( A  -  B) \\

 \sf \:  =  \color{orange} \frac{c}{sin( C) }  \cdot sin (C ) \cdot \:   sin ( A  -  B) \\

 \sf \:  =  \color{orange} c \cdot \:   sin ( A  -  B) \\

 \sf \:  =  \color{orange} c \:   sin ( A  -  B) \\

Similar questions