11. In the adjoining figure, ABCD is a trapezium in which
AB || DC. The diagonals AC and BD intersect at O. Prove
that
AO/OC = OD/BO
Using the above result, find the value(s) of x if
OA = 3x - 19, OB = x - 4, OC = x - 3 and OD = 4.
Answers
Answered by
1
Answer:
=2
Step-by-step explanation:
GIVEN:
OA= 3x-1 , OC= 5x-3, OD= 6x-5 , BO = 2x+1
AO/OC = BO/OD
[The diagonals of a Trapezium divide each other proportionally]
(3x-1)/(5x-3) =( 2x+1)/(6x-5)
(3x-1) (6x-5) = (5x-3) ( 2x+1)
3x(6x-5) -1 (6x-5) = 2x(5x-3)+1(5x-3)
18x² -15x -6x +5 = 10x² -6x +5x -3
18x² -21x +5 = 10x² - x -3
18x² -10x² -21x + x +5+3 =0
8x² - 20x +8= 0
4(2x² -5x +2) = 0
2x² -5x +2 = 0
2x² -4x -x +2= 0
[By factorization]
2x(x-2) -1(x-2)= 0
(2x-1) (x-2) = 0
(2x-1) = 0 or (x-2) = 0
x = ½ or x = 2
If we put x= ½ in OD , The value of OD is negative.
Hence, the value of is x = 2.
Similar questions