11) In the figure AB = BC and AD is
perpendicular to CD. Prove that :
AC^2 = 2.BC.DC.
Attachments:
Answers
Answered by
6
Answer:
Step-by-step explanation:
Using Pythagoras Theorem in Δ ADB
AB² = AD² + DB²
AD² = AB² - DB² ---------eq(I)
Using Pythagoras Theorem in Δ ADC
AC² = AD² + DC²
AC² = (AB² - DB²) + DC²------------[Putting the value of AD² from eq(I)]
AC² = (AB² - DB²) + (DB+BC)²----------------[From the figure]
AC² = (AB² - DB²) + DB² + BC² + 2BD.BC
AC² = Bc² + BC² + 2BD.BC -----[IF AB=BC then AB² = BC²]
AC² = 2BC (BC+BD)
AC² = 2BCDC [Hence proved]
Similar questions