Math, asked by sushma9690, 1 year ago

11. Prove that: (cosec A-sin A) (sec A- cos A) (tan A + cot A)=1​

Answers

Answered by RakhiBhedke
2

Answer:

Proved below!

Step-by-step explanation:

To prove:

(cosec A-sin A) (sec A- cos A) (tan A + cot A)=1

L.H.S = (cosec A-sin A) (sec A- cos A) (tan A + cot A)

=> (tanA + cotA)(cosecA - sinA)(secA, - cosA)

=>  (tanA + \frac{1}{tanA})(\frac{1}{sinA} - sinA)(\frac{1}{cosA} - cosA)

=>  (\frac{tan^2A + 1}{tanA})(\frac{1 - sin^2A}{sinA})(\frac{1 - cos^2A}{cosA})

=> We know that,

tan²A + 1 = sec²A

1 - sin²A = cos²A

1 - cos²A = sin²A

=>  (\frac{sec^2A}{tanA})(\frac{cos^2A}{sin^2A})(\frac{sin^2A}{cosA})

[∵ secA = 1/cosA]

=>  \therefore \frac{\cancel{sec^2A}}{tanA} \times \frac{\cancel{cos^2A}}{\cancel{sinA}} \times \frac{sin^{\cancel{2}}A}{cosA}

=>  \frac{\cancel{sinA}}{\cancel{cosA}} \times \frac{\cancel{1}}{\cancel{tanA}}

=> 1 = R.H.S

=> L.H.S = R.H.S

=> Hence, the proof.

Similar questions