11.Show that in a quadrilateral ABCD, AB + BC + CD + DA < 2 (BD + AC)
12. Show that in a quadrilateral ABCD,AB + BC + CD + DA > AC + BD
jldi solve kro...
Answers
Answer:
Explanation:
11) Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side
Therefore,
In Δ AOB, AB < OA + OB ……….(i)
In Δ BOC, BC < OB + OC ……….(ii)
In Δ COD, CD < OC + OD ……….(iii)
In Δ AOD, DA < OD + OA ……….(iv)
⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD
⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO + OB)]
⇒ AB + BC + CD + DA < 2(AC + BD)
Hence, it is proved.
12) Let ABCD be a quadrilateral with AC and BD be its diagonals
In triangle ABC
AB+BC>AC----(1)
In triangle ACD
CD+AD>AC--------(2)
Adding the equation (1)and (2) we get,
(AB+BC+CD+AD)>AC+AC
⇒(AB+BC+CD+AD)>2AC
Similarly,
It can be proved at (AB+BC+CD+AD)>2BD by taking the triangle ABD and BCD.
Now, adding two results,we get
2(AB+BC+CD+AD)>2(AC+BD)
⇒AB+BC+CD+AD>AC+BD
pls mark me as the brainliest