Math, asked by iqra900, 3 months ago

11 sin70°/ 7 cos20° - 4/7 cos53° cosec 37° / tan 15° tan 35° tan 55° tan 75° ​

Attachments:

Answers

Answered by bhattharshit132
0

Answer:

ffdxjjf6idrryhfdz vhhffgg

Answered by MrImpeccable
4

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Solve:

  •  \dfrac{11\sin 70^{\circ}}{4\cos 20^{\circ}} - \dfrac{4}{7} \dfrac{\cos 53^{\circ} \csc 37^{\circ}}{\tan 15^{\circ} \tan 35^{\circ} \tan 55^{\circ} \tan 75^{\circ}}\\

Solution:

 \dfrac{11\sin 70^{\circ}}{4\cos 20^{\circ}} - \dfrac{4}{7} \dfrac{\cos 53^{\circ} * \csc 37^{\circ}}{\tan 15^{\circ} * \tan 35^{\circ} * \tan 55^{\circ} * \tan 75^{\circ}}\\\\\implies \dfrac{11\sin 70^{\circ}}{4\cos (90-70)^{\circ}} - \dfrac{4}{7} \dfrac{\cos 53^{\circ} *  \csc (90-53)^{\circ}}{\tan 15^{\circ} * \tan 35^{\circ} * \tan (90-35)^{\circ} * \tan (90-15)^{\circ}}\\\\\implies \dfrac{11\sin 70^{\circ}\!\!\!\!\!\!\!\!\!\!\!\!\!\huge{/}\:}{4\sin 70^{\circ}\!\!\!\!\!\!\!\!\!\!\!\!\!\huge{/}\:} - \dfrac{4}{7} \dfrac{\cos 53^{\circ} \!\!\!\!\!\!\!\!\!\!{\huge{/}}\:\:\:\:\: * \dfrac{1}{\cos 53^{\circ}}\!\!\!\!\!\!\!\!\!\!\!\huge{/}}{(\tan 15^{\circ}\!\!\!\!\!\!\!\!\!\!\!/ \:\:\:\:\:\:\: * \cot 15^{\circ}\!\!\!\!\!\!\!\!\!\!{/} \:\:\:\:\:\: * )(\cot 35^{\circ}\!\!\!\!\!\!\!\!\!\!\!\!{/} \:\:\:\:\:\:\:\: * \tan 35^{\circ}\!\!\!\!\!\!\!\!\!\!{/})}\\\\\implies \dfrac{11}{7} - \dfrac{4}{7} \\\\\implies \dfrac{11-4}{7} \\\\\implies \dfrac{7}{7}\!\!\!\!\!\huge{/} \\\\\bf{\implies 1}

Formula Used:

  • \cos(90-\theta) = \sin\theta
  • \tan(90-\theta) = \cot\theta
  • \cos\theta * \sec\theta = 1
  • \tan\theta * \cot\theta = 1

Learn More:

  • \sin(90-\theta) = \cos\theta
  • \cot(90-\theta) = \tan\theta
  • \sec(90-\theta) = \csc\theta
  • \csc(90-\theta) = \sec\theta
  • \sec\theta * \csc\theta = 1

Hope it helps!

Similar questions