Math, asked by shresthaaayusha510, 16 days ago

11. Solve: sin x + 3 cos x = V2 ​

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\tt{sin(x)+3\,cos(x)=\sqrt{2}}

\sf{\implies\,sin(x)=\sqrt{2}-3\,cos(x)}

\sf{\implies\,sin^{2}(x)=(\sqrt{2}-3\,cos(x))^{2}}

\sf{\implies\,sin^{2}(x)=2+9\,cos^{2}(x)-6\sqrt{2}\,cos(x)}

\sf{\implies\,1-cos^{2}(x)=2+9\,cos^{2}(x)-6\sqrt{2}\,cos(x)}

\sf{\implies\,1=2+10\,cos^{2}(x)-6\sqrt{2}\,cos(x)}

\sf{\implies\,10\,cos^{2}(x)-6\sqrt{2}\,cos(x)+1=0}

\sf{\implies\,cos(x)=\dfrac{6\sqrt{2}\,\pm\,\sqrt{(-6\sqrt{2})^2-4\cdot10\cdot1}}{2\cdot10}}

\sf{\implies\,cos(x)=\dfrac{6\sqrt{2}\,\pm\,\sqrt{72-40}}{20}}

\sf{\implies\,cos(x)=\dfrac{6\sqrt{2}\,\pm\,\sqrt{32}}{20}}

\sf{\implies\,cos(x)=\dfrac{6\sqrt{2}\,\pm\,4\sqrt{2}}{20}}

\sf{\implies\,cos(x)=\dfrac{6\sqrt{2}\,+\,4\sqrt{2}}{20}\,\,\,\,\,\,\,\,\,\,or\,\,\,\,\,\,\,\,\,\,cos(x)=\dfrac{6\sqrt{2}\,-\,4\sqrt{2}}{20}}

\sf{\implies\,cos(x)=\dfrac{10\sqrt{2}}{20}\,\,\,\,\,\,\,\,\,\,or\,\,\,\,\,\,\,\,\,\,cos(x)=\dfrac{2\sqrt{2}}{20}}

\sf{\implies\,cos(x)=\dfrac{\sqrt{2}}{2}\,\,\,\,\,\,\,\,\,\,or\,\,\,\,\,\,\,\,\,\,cos(x)=\dfrac{\sqrt{2}}{10}}

\sf{\implies\,cos(x)=\dfrac{1}{\sqrt{2}}\,\,\,\,\,\,\,\,\,\,or\,\,\,\,\,\,\,\,\,\,cos(x)=\dfrac{\sqrt{2}}{10}}

\sf{\bullet\bold{\green{\,\,Solving\,\,\,the\,\,\,first\,\,\,condition:}}}

We have,

\sf{\implies\,\blue{cos(x)=\dfrac{1}{\sqrt{2}}}}

\sf{\implies\,cos(x)=cos\bigg(\dfrac{\pi}{4}\bigg)}

\sf{\implies\,x=2n\pi\,\pm\,\dfrac{\pi}{4}\,\,\,\,\,\,\,\,\,\forall\,n\in\mathbb{Z}}

\sf{\bullet\bold{\green{\,\,Solving\,\,\,the\,\,\,second\,\,\,condition:}}}

We have,

\sf{\implies\,\blue{cos(x)=\dfrac{\sqrt{2}}{10}}}

\sf{\implies\,cos(x)=cos(\alpha)}

\sf{where,\,\,\alpha=tan^{-1}(7)}

So,

\sf{\implies\,x=2m\pi\,\pm\,\alpha\,\,\,\,\,\,\,\,\,\forall\,m\in\mathbb{Z}}

Similar questions