Math, asked by devyani2480, 1 month ago

11. The denominator of a fraction is 4 less than the numerator. If the sum of both numerator and denominator is 20, find the fraction.

half of the first

port

Answers

Answered by snehitha2
6

Answer:

The required fraction is 12/8.

Step-by-step explanation:

Given :

The denominator of a fraction is 4 less than the numerator. If the sum of both numerator and denominator is 20.

To find :

the fraction

Solution :

Let the numerator of the fraction be x and denominator be y.

According to the question,

y = x – 4

The sum of numerator and denominator is 20.

x + y = 20

x + x – 4 = 20

2x = 20 + 4

2x = 24

x = 24/2

x = 12

Value of y :

y = x – 4

y = 12 – 4

y = 8

The numerator is 12 and denominator is 8.

Therefore, the fraction is 12/8.

Answered by AlluringKitty
5

  \\ \textbf{ Let numerator  \& denominator be x and y } \\  \\  \sf \: required  \: fraction =  \frac{x}{y}  \\  \\  \underline{   {\pmb{ \textsf{ \maltese \:  \: According to first condition} }}} \\  \\   \dashrightarrow \tt \: y = x - 4 \\  \\ \dashrightarrow \tt \: x - y = 4 \dots \dots {eq}^{n}( 1) \\   \\ \underline{   {\pmb{ \textsf{ \maltese \:  \: According to second \: condition} }}}  \\  \\\dashrightarrow \tt \: x + y = 20 \dots \dots {eq}^{n}  (2) \\  \\  \\  \underline{ \pmb{ \sf{Adding  \:  \: eq{^n }  \:  \: (1)  \:  \: \& \:  \: (2)}}} \\  \\  \\  \bf \: x - \cancel y = 4 \\  \underline{ \bf \: x +  \cancel{y} = 20 }\\   \bf \: 2x = 24 \\   \bf \: x =  \frac{ \cancel{24}}{ \cancel2} \\ \\  \underline {\boxed{   \bf \: x = 12}}\\  \\  \\  \\  \underline{ \pmb{ \sf{Substitute \:  x = 12 \:  \:  in \:  \:  eq^{n} (1)}}} \\  \\    \dashrightarrow \tt \: x - y = 4 \\  \\ \dashrightarrow \tt12 - y = 4 \\  \\ \dashrightarrow \tt - y = 4 - 12 \\  \\ \dashrightarrow \tt  \cancel- y = \cancel  - 8 \\  \\ \dashrightarrow \tt \underline{ \boxed{ \sf{y = 8}}} \bigstar \\  \\  \\  \underline{ \boxed{ \textsf{The required fraction is}  \:  \sf\dfrac{x}{y} = \frac{12}{8} }}

Similar questions