Math, asked by jojorocks999, 6 months ago


11. The ratio of diameters of two circles is 5 : 6. Find the ratio of their circumferences.

Answers

Answered by sk515162662
0

Answer:

5:6

Step-by-step explanation:

i hope this is useful for you

Answered by LoverLoser
2

We are given that the ratio of diameters of two circles is 5 : 6, and we need to find the ratios of their circumferences.

We Have :

\sf{Diameter_{(Circle1)} \: : \: Diameter_{(Circle2)}\:=\: 5\::\:6}

To Find :

\sf{Circumference_{(Circle1)} \: : \: Circumference_{(Circle2)}\:= \: ?}

Solution :

\bf{Diameter_{(Circle1)} \: : \: Diameter_{(Circle2)}\:=\: 5\::\:6}

\longrightarrow \sf{\dfrac{Diameter_{(Circle1)}}{Diameter_{(Circle2)}} = \dfrac{5}{6}}

We know that :

Radius (r) = D/2

\longrightarrow \sf{\dfrac{Radius_{(Circle1)}}{Radius_{(Circle2)}} = \dfrac{\frac{5}{\cancel{2}}}{\frac{6}{\cancel{2}}}}

\longrightarrow \sf{\dfrac{Radius_{(Circle1)}}{Radius_{(Circle2)}} = \dfrac{5}{6}}

Let the common factor between their ratios be x

\longrightarrow Radius of Circle 1 = 5x

\longrightarrow Radius of Circle 2 = 6x

Using Formula : Circumference of Circle = 2πr

Circumference of Circle 1

\longrightarrow 2πr1

\longrightarrow 2π × 5x

Circumference of Circle 2

\longrightarrow 2πr2

\longrightarrow 2π × 6x

\bf{\dfrac{Circumference_{(Circle1)}}{Circumference_{(Circle2)}}\:= \: \dfrac{\cancel{2 \pi} \times 5\cancel{x}}{\cancel{2 \pi} \times 6\cancel{x}}}

\sf{\dfrac{Circumference_{(Circle1)}}{Circumference_{(Circle2)}}\:= \: \dfrac{5}{6}}

\sf{Circumference_{(Circle1)} \: : \: Circumference_{(Circle2)}\:= \: 5 \: : \: 6

Similar questions