Math, asked by nikhilcia007, 6 months ago

11. The recurrence relation between P(x) and P(x+1) in a Poisson distribution is given by
a) P(x+1)-m P(x) = 0
b) m P(x+1) - P(x) = 0
c)(x+1) P(x+1)- m P(x) = 0
d) (x+1) P(x) - x P(x+1)=0​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{P(x) is the probability function of Poisson distribution}

\underline{\textbf{To find:}}

\textsf{The relation between P(x) and P(x+1)}

\underline{\textbf{Solution:}}

\underline{\textsf{Concept used:}}

\textsf{The probabillity function of Poisson distribution is}

\boxed{\mathsf{P(x)=\dfrac{e^{-m}m^x}{x!}}}

\textsf{We derive relation between P(x) and P(x+1)}

\mathsf{Consider,}

\mathsf{P(x+1)=\dfrac{e^{-m}m^{x+1}}{(x+1)!}}

\mathsf{Using,}\;\boxed{\mathsf{(n+1)!=(n+1}\,n!}}

\implies\mathsf{P(x+1)=\dfrac{e^{-m}m^x\,m^1}{(x+1)\,x!}}

\implies\mathsf{P(x+1)=\dfrac{e^{-m}m^x}{x!}{\times}\dfrac{m}{x+1}}

\textsf{This can be written as}

\mathsf{\dfrac{(x+1)}{m}P(x+1)=\dfrac{e^{-m}m^x}{x!}}

\mathsf{\dfrac{(x+1)}{m}P(x+1)=P(x)}

\mathsf{(x+1)\;P(x+1)=m\;P(x)}

\implies\boxed{\mathsf{(x+1)\;P(x+1)-m\;P(x)=0}}

\underline{\textbf{Answer:}}

\mathsf{Option\;(c)\;is\;correct}

Similar questions