11. The sum of the digits of a two-digit number is 12. The number obtained
by interchanging its digits exceeds the given number by 18. Find the
number.
[CBSE 2006)
Answers
Answered by
19
Let 2 digit number be x and y
According to the Question,
The sum of 2 digit number is 12
⇒ x + y = 12 ⟶ ⟶ ⟶ [Equation 1]
Original Number: 10x + y
On interchanging the digits; 10y + x
Now,
(10y + x) = 18 + (10x + y)
⇒ 10y + x = 18 + 10x + y
⇒ 10y - y = 18 + 10x - x
⇒ 9y = 18 + 9x
⇒ 9y - 9x = 18
⇒ 9(y - x) = 18
⇒ (y - x) = 18 ÷ 9
⇒ (y - x) = 2 ⟶ ⟶ ⟶ [Equation 2]
Adding Equation 1 and 2,
x + y = 12
{+} -x + y = 2
2y = 14
→ 2y = 14
→ y = 14 ÷ 2
∴ y = 7
Substitute value of y in Equation 1 to find the value of x
x + y = 12
⇒ x + 7 = 12
⇒ x = 12 - 7
∴ x = 5
Now, let's find the number.
Original Number = 10x + y
→ Original Number = 10(5) + 7
→ Original Number = 50 + 7
∴ Original Number = 57
Similar questions