Math, asked by muksehkumar846, 11 months ago

11. The triangle ABC is right-angled at C. From P, a
point on the hypotenuse, PQ is drawn parallel to
AC cutting BC at Q. If AC = 2.5 cm, BC = 6cm
and PQ = 1 cm, find
(i) BQ (ii) BP
(ICSE)​

Answers

Answered by MaheswariS
12

\textbf{Given:}

\textsf{In right angled triangle ABC, from P on hypotenuse PQ is drawn parallel to AC }

\mathsf{AC=2.5\,cm,\;BC=6\,cm,\;PQ=1\,cm}

\textbf{To find:}

\textsf{(i)\;BQ\;\;(ii)\;BP}

\textbf{Solution:}

\mathsf{In\;right\;\triangle\;ACB}

\mathsf{AB^2=AC^2+BC^2}

\mathsf{AB^2=2.5^2+6^2}

\mathsf{AB^2=6.25+36}

\mathsf{AB^2=42.25}

\mathsf{AB=\sqrt{42.25}}

\implies\mathsf{AB=6.5}

\textbf{In triangle ACB and PQB}

\mathsf{\angle{A}=\angle{BPQ}}

\mathsf{\angle{C}=\angle{PQB}}

\mathsf{\angle{B}=\angle{QBP}}

\textsf{By AAA similarity,}

\mathsf{\triangle\,ACB\;\;and\;\;\triangle\,PQB\;are\;similar}

\therefore\textsf{Their corresponding sides are proportional}

\mathsf{\dfrac{AC}{PQ}=\dfrac{BC}{BQ}=\dfrac{AB}{BP}}

\mathsf{\dfrac{2.5}{1}=\dfrac{6}{BQ}=\dfrac{6.5}{BP}}

\implies\mathsf{BQ=\dfrac{6}{2.5}}

\implies\boxed{\mathsf{BQ=2.4\;cm}}

\mathsf{and}

\mathsf{\dfrac{2.5}{1}=\dfrac{6.5}{BP}}

\mathsf{BP=\dfrac{6.5}{2.5}}

\implies\boxed{\mathsf{BP=2.6}}

\textbf{Find more:}

L and M are points on sides AB and AC of a triangle ABC,if AL = 2cm, LB = 4cm, LM||BC. Prove that 3LM = BC.

https://brainly.in/question/32668624

Attachments:
Answered by 4929
2

Step-by-step explanation:

above answer is very correct

Similar questions