Physics, asked by laasyachowdary12, 10 months ago

11. What happens when a parallel beam of light falls on a lens making some angle with the prinicipal axis
Draw the Diagram
12. If an object is kept 20 cm away from lens and image is formed 40 cm away from the lens, then what
is the focal length of the lens and what type of lens it is? Find the magnification also ?


guys plz ans this 2 questions argent





Answers

Answered by mehsarandmehraj7867
1

Explanation:

Image Formation by Lenses

LEARNING OBJECTIVES

By the end of this section, you will be able to:

List the rules for ray tracking for thin lenses.

Illustrate the formation of images using the technique of ray tracking.

Determine power of a lens given the focal length.

Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera’s zoom lens. In this section, we will use the law of refraction to explore the properties of lenses and how they form images.

The word lens derives from the Latin word for a lentil bean, the shape of which is similar to the convex lens in Figure 1. The convex lens shown has been shaped so that all light rays that enter it parallel to its axis cross one another at a single point on the opposite side of the lens. (The axis is defined to be a line normal to the lens at its center, as shown in Figure 1.) Such a lens is called a converging (or convex) lens for the converging effect it has on light rays. An expanded view of the path of one ray through the lens is shown, to illustrate how the ray changes direction both as it enters and as it leaves the lens. Since the index of refraction of the lens is greater than that of air, the ray moves towards the perpendicular as it enters and away from the perpendicular as it leaves. (This is in accordance with the law of refraction.) Due to the lens’s shape, light is thus bent toward the axis at both surfaces. The point at which the rays cross is defined to be the focal point F of the lens. The distance from the center of the lens to its focal point is defined to be the focal length f of the lens. Figure 2 shows how a converging lens, such as that in a magnifying glass, can converge the nearly parallel light rays from the sun to a small spot.

The Figure on the right shows a convex lens. Three rays heading from left to right, 1, 2, and 3, are considered. Ray 2 falls on the axis and rays 1 and 3 are parallel to the axis. The distance from the center of the lens to the focal point F is small f on the right side of the lens. Rays 1 and 3 after refraction converge at F on the axis. Ray 2 on the axis goes undeviated. The Figure on the left shows an expanded view of refraction for ray 1. The angle of incidence is theta 1 and angle of refraction theta 2 and a dotted line is the perpendicular drawn to the surface of the lens at the point of incidence. The ray after the refraction at the second surface emerges with an angle equal to theta 1 prime with the perpendicular drawn at that point. The perpendiculars are shown as dotted lines.

Figure 1. Rays of light entering a converging lens parallel to its axis converge at its focal point F. (Ray 2 lies on the axis of the lens.) The distance from the center of the lens to the focal point is the lens’s focal length f. An expanded view of the path taken by ray 1 shows the perpendiculars and the angles of incidence and refraction at both surfaces.

CONVERGING OR CONVEX LENS

The lens in which light rays that enter it parallel to its axis cross one another at a single point on the opposite side with a converging effect is called converging lens.

Similar questions