Math, asked by 8787565465, 11 months ago

116
An equilateral triangle has each of its
side 60 mm long. Find its area: -
1578.8 mm
1568.8 mm
1558.8 mm
1588.8 mm
17
Base area and volume of a solid
cylinder are 13.85 cm and 69.3 cm
respectively. Find its height.
0.1 cm
0.5 cm
5 cm
0.05 cm
18 104°F=
55°C
40° C
60°C
48°C
10
h
:
--
-​

Answers

Answered by lkovaishnaviagarwal
0

Answer:equilateral triangle answer=1558.8 mm

cylinder answer=5cm

fahrenheit answer=40 celsius

Step-by-step explanation:

equilateral triangle ques-

side of an equilateral triangle=base of an equilateral triangle=60mm

height of an equilateral triangle =\sqrt{3}/2*(side of equilateral triangle)

                                                    =30\sqrt{3} mm

area of triangle=1/2*height of a triangle*base of a triangle

                         =1558.8mm

cylinder question

volume of a cylinder= 22/7*r*r*h=69.3

where r is the radius of circle base and h is the height of a cylinder

base area=22/7*r*r=13.85

13.85*h=69.3

h=5 cm

fahrenheit question

temperature in fahrenheit=9/5*temperature in celsius+32

temperature in celsius=5/9*(temperature in fahrenheit-32)

                                     =5/9*(104-32)

                                      =40

Answered by hukam0685
0

Answer:

16) Option C (1558.8 sq-mm)

17) Option C (5 cm)

18) Option B (40°C)

Step-by-step explanation:

1) Area of Equilateral triangle

 =  \frac{ \sqrt{3} }{4}  {a}^{2}  \\  \\ a = side \\

Here side length is given 60 mm

Area

 =  \frac{ \sqrt{3} }{4}  \times ( {60)}^{2}  \\  \\  =  \frac{ \sqrt{3} }{4}  \times 3600 \\  \\  =  \sqrt{3}  \times 900  \\  \\  = 1.732 \times 900 \\  \\  = 1558.84 \:  {mm}^{2}  \\  \\

17) Area of base of Cylinder

\pi \:  {r}^{2}  = 13.85 \\  \\

volume \: of \: cylinder :  \pi {r}^{2} h = 69.3 \\  \\ 13.85h = 69.3 \\  \\ h =  \frac{69.3}{13.85}  \\  \\ h = 5 \: cm

18) 104° F

Formula of conversion of °F to °C

(32°F − 32) × 5/9 = 0°C

=(104-32)×5/9

=72×5/9

=8×5

= 40°C

Hope it helps you.

Similar questions