Math, asked by singhkrishankant63, 4 months ago

118 H. M. Mathematics (Class 9)
10. In fig. find Zx.
D
с
(x + 20°)
(x + 31)
E
А
B
11. In the given fig. AB and AC are opposite rays. If (a -36) = 20°, find Za and 2
D
с
A
B
12. In the given fig. determine the value of x'.
2x
2x
60° /​

Attachments:

Answers

Answered by Anonymous
102

Given:-

  • \angle DAE = (x° + 31°)
  • \angle DAC = (x° + 20°)
  • \angle CAB = x°

Find:-

  • Value of \angle x

Diagram:-

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1,1)(1,1)(6,1)\qbezier(3,1)(6,4)(6,4)\qbezier(3,1)(1.5,4)(1.5,4)\put(3, 1){\vector(1,0){3}} \put(3,1){\vector( - 1,0){3}}\put(3,1){\vector(-1,2){2}}\put(3,1){\vector(1,1){3}} </p><p>\put(0.5,1){\circle*{0.3}}\put(5.5,1){\circle*{0.3}}\put(1.5,4){\circle*{0.3}}\put(5.5,3.5){\circle*{0.3}}\put(0.4,1.5){$\bf (x^{\circ} + 31^{\circ})$} \put(2.4,2){$ \footnotesize{ \sf{(x^{\circ}+20^{\circ})}}$}\put(4,1.4){$\bf (x^{ \circ})$} \qbezier(2.7,1.5)(1.9,1.5)(2,1)\qbezier(2.7,1.5)(3,2)(3.5,1.5) \qbezier(3.5,1.5)(4.4,1.4)(3.8,1)\put(0.5,0.5){\bf E} \put(2.8,0.6){\bf A} \put(5.4,0.5){\bf B}\put(1,3.8){\bf D}\put(5.7,3.2){\bf C} \end{picture}

Solution:-

Here, we can see EAB is a straight line. So, sum of all angles lies on it will be 180° as because of Linear Pair.

 \implies\sf \angle DAE  + \angle DAC  + \angle CAB =  {180}^{ \circ} \bigg\lgroup Linear\:Pair\bigg\rgroup  \\

 \purple{\sf where} \footnotesize{\begin{cases}  \pink{\sf\angle DAE = ( {x}^{ \circ} +  {31}^{ \circ})} \\  \green{\sf\angle DAC= ( {x}^{ \circ} +  {20}^{ \circ})} \\ \blue{\sf \angle CAB = x^{\circ}} \end{cases}}

\underline{\textsf{Substituting these values in the formula:-}}

 \dashrightarrow\sf \angle DAE  + \angle DAC  + \angle CAB =  {180}^{ \circ}  \\  \\

 \dashrightarrow\sf x^{\circ} + 31  ^{\circ}+ x ^{\circ}  + 20 ^{\circ}  +x^{\circ} =  {180}^{ \circ}  \\  \\

 \dashrightarrow\sf 3x^{\circ} + 51^{\circ}=  {180}^{ \circ}  \\  \\

 \dashrightarrow\sf 3x^{\circ}=  {180}^{ \circ}  -  51^{\circ}  \\  \\

 \dashrightarrow\sf 3x^{\circ}=  {129}^{ \circ}\\  \\

 \dashrightarrow\sf x =  \dfrac{129}{3} \\  \\

 \dashrightarrow\sf x = 43\\  \\

 \dashrightarrow\sf x = 43^{ \circ} \\  \\

 \small{\sf \therefore \underline{Value\:of\:\angle x\:is\:43^{\circ}}}

Similar questions