119. If seco + tano = 2 + √5 then the value
of sino + coso ?
Answers
Question:
If sec∅ + tan∅ = √5 + 2 , then find the value of sin∅ + cos∅ .
Answer:
sin∅ + cos∅ = 3/√5 or 3√5/5
Note:
• sin²∅ + cos²∅ = 1
• sec²∅ - tan²∅ = 1
• cosec²∅ - cot²∅ = 1
• sec∅ = 1/cos∅
• cosec∅ = 1/sin∅
• tan∅ = sin∅/cos∅
• cot∅ = 1/tan∅ = cos∅/sin∅
• (A+B)² = A² + B² + 2•A•B
• (A-B)² = A² + B² - 2•A•B
• (A+B)•(A-B) = A² - B²
Solution:
Given: sec∅ + tan∅ = √5 + 2
To find : sin∅ + cos∅ = ?
Let,
sec∅ + tan∅ = √5 + 2 ------(1)
Also,
We know that,
=> sec²∅ - tan²∅ = 1
=> (sec∅ - tan∅)•(sec∅ + tan∅) = 1
=> sec∅ - tan∅ = 1/(sec∅ + tan∅)
=> sec∅ - tan∅ = 1/(√5 + 2) { using eq-(1) }
Now,
Rationalising the denominator in LHS, we have ;
=> sec∅ - tan∅ = (√5 - 2)/[(√5 + 2)•(√5 - 2)]
=> sec∅ - tan∅ = (√5 - 2)/[(√5)² - 2²]
=> sec∅ - tan∅ = (√5 - 2)/(5 - 4)
=> sec∅ - tan∅ = √5 - 2 ---------(2)
Now,
Adding eq-(1) and eq-(2) , we have ;
=> sec∅ + tan∅ + sec∅ - tan∅ = √5 + 2 + √5 - 2
=> 2•sec∅ = 2√5
=> sec∅ = 2√5/2
=> sec∅ = √5
=> 1/cos∅ = √5
=> cos∅ = 1/√5
Also,
We know that ,
=> sin²∅ + cos²∅ = 1
=> sin²∅ = 1 - cos²∅
=> sin²∅ = 1 - (1/√5)²
=> sin²∅ = 1 - 1/5
=> sin²∅ = (5-1)/5
=> sin²∅ = 4/5
=> sin∅ = √(4/5)
=> sin∅ = 2/√5
Thus,
=> sin∅ + cos∅ = 2/√5 + 1/√5
=> sin∅ + cos∅ = (2+1)/√5
=> sin∅ + cos∅ = 3/√5 or 3√5/5
Hence,
The required value of sin∅ + cos∅ is 3/√5 or 3√5/5 .