Math, asked by ShuchiRecites, 3 months ago

11th Warm Up ‼️ Answer this Question with Solution ​

Attachments:

Dinosaurs1842: hello Anna, sorry to post this here
Dinosaurs1842: Can you tell me how you got the answer as (x-6)(x+54) in the upstream and downstream sum you did?
Dinosaurs1842: as I got (x+6)(54-x)
Dinosaurs1842: I got the correct answer, thank you anyway

Answers

Answered by Anonymous
53

Solution :

\sf\sqrt{2+\sqrt{2+2\cos4\theta}}=2\sin\theta

Step by step Explanation :

Given : π < 2θ < 3π/2

We have to find the value of \sf\sqrt{2+\sqrt{2+2\cos4\theta}}

We know that

cos2θ=2cos²θ-1

Then , cos4θ=2(cos2θ)²-1

➝ 1+cos4θ=2(cos2θ)²

Now ,

\sf\sqrt{2+\sqrt{2+2\cos4\theta}}

\sf=\sqrt{2+\sqrt{2(1+\cos4\theta)}}

\sf=\sqrt{2+\sqrt{2(2\cos^{2}2\theta)}}

\sf=\sqrt{2+\sqrt{4cos^{2}2\theta}}

Here,

\sqrt{4cos^{2}2\theta}=\pm2\cos2\theta

Now we will see that what θ mean here to us . As given in the equation

π < 2θ < 3π/2

It signifies that 2θ lies in the third Quadrant i.e 180° < 2θ < 270°

We know that : In third Quadrant cosine is -ve .

Now,

\sf\sqrt{2+\sqrt{4cos^{2}2\theta}}

\sf=\sqrt{2-2cos2\theta}

\sf=\sqrt{2(1-cos2\theta)}

\sf=\sqrt{2(2\sin^{2}\theta)}

\sf=\sqrt{4\sin^2\theta}

\sf=\pm2\sin\theta

Now we'll find about θ

180° < 2θ < 270°

➝ 90° < θ < 135°

Thus , θ lies in second quadrant , where sin function is +ve .

Therefore, Correct option d)2sinθ

Some More Formula's :

  1. sin2A = 2 sinA cosA
  2. cos2A = cos²A - sin²A
  3. tan2A = 2 tanA / (1 - tan²A)
  4. cos2θ=2cos²θ-1
  5. cos2θ=1-2sin²θ
  6. sin2θ=2sinθcosθ

SweetMystery: Awesome :D
IdyllicAurora: Perfect as always ...
ShuchiRecites: some mistakes dear
ShuchiRecites: it has to be - 2cos2∅ after root because 2∅ lies in third quadrant :-)
QueenOfStars: Worth plausible! :D
Answered by Anonymous
13

Solution:-

 \sqrt{ 2 + \sqrt{2 + 2 \cos(4 \theta)  } }  \:  =  \: 2 \sin( \theta)

Step by Step explanation:

Given : π < 2\sf{theta}<3π/2

We know that

Cos 2\sf{theta}=

 \sf \: 2 { ( cos) }^{2} \theta \:  - 1 \\  \\  \sf \: then \:  \cos(4 \theta)  = 2 {(cos2 \theta)}^{2}  - 1 \\  \\  \implies \: 1 +  \cos(4 \theta)  = 2 {(cos2 \theta)}^{2}

Now,

 \sf \sqrt{2 +  \sqrt{2 + 2 \cos(4 \theta) } }  \\  \\  \sf \implies \:  \sqrt{2 +  \sqrt{2(1 +  \cos(4 \theta) } }  \\  \\  \sf \implies \:  \sqrt{2 +  \sqrt{2(2  { cos }^{2} 2 \theta) } }  \\  \\  \sf \implies \:  \sqrt{2 +  \sqrt{4 {cos}^{2}2 \theta } }

Here,

 \sf \ \sqrt{4 {cos}^{2} 2 \theta}  = 2 \cos(2 \theta)  \\  \\  \sf \implies \:  \sqrt{2 +  \sqrt{4 {cos}^{2}2 \theta } }  \\  \\  \sf \implies  \sqrt{2 -  {2 {cos}^{2} \theta } }  \\  \\  \sf \implies \sqrt{2(2 {sin}^{2}  \theta)}  \\  \\  \sf \implies \sqrt{4 {sin}^{2} \theta }  \\  \\  \sf \implies2 \sin( \theta)

Similar questions