Math, asked by UniverseExplorer, 1 month ago

11x-6y+18=0 and 5x-4y+40=0 solve using elimination method​

Answers

Answered by gsarju7
2

Step-by-step explanation:

11x-6y=-18-

5x-4y=-40

from equation 1,

11x-6y=-18

or, 11x= -18+6y

or, x=(-18+6y)/11

putting the value of x in equation_2,

--(equation_1)

--(equation_2)

5{(-18+6y)/11]-4y= -40

(-90+30y)/11-4y= -40

-90+30y-44y= -40*11

-90-14y= -440

-14y= -350

y=-350/-14

y= 25

putting the value of y in equation1,

11x-6*(25)= -18

11x= -18+150

x= 132/11

X= 12

Answered by urfq123
0

Answer:

x= 12 and y=5

Step-by-step explanation:

equ. 1 :  11x -6y+18=0

multiply with 2.

22x-12y+36=0

equ.2:    5x-4y+40=0

multiply with 3.

15x-12y+120=0

change the sign of the second equation.

-15x+12y-120=0

Subtract:

7x = -84

x= -84/7

Substitute value of x in equ.2

5 × -12 - 4y +40=0

-60-4y+40=0

-20-4y=0

4y= -20

y= -20/4

y= -5

PLS MARK ME AS A BRAINLIEST

Similar questions