11x-6y+18=0 and 5x-4y+40=0 solve using elimination method
Answers
Answered by
2
Step-by-step explanation:
11x-6y=-18-
5x-4y=-40
from equation 1,
11x-6y=-18
or, 11x= -18+6y
or, x=(-18+6y)/11
putting the value of x in equation_2,
--(equation_1)
--(equation_2)
5{(-18+6y)/11]-4y= -40
(-90+30y)/11-4y= -40
-90+30y-44y= -40*11
-90-14y= -440
-14y= -350
y=-350/-14
y= 25
putting the value of y in equation1,
11x-6*(25)= -18
11x= -18+150
x= 132/11
X= 12
Answered by
0
Answer:
x= 12 and y=5
Step-by-step explanation:
equ. 1 :
multiply with 2.
equ.2:
multiply with 3.
change the sign of the second equation.
Subtract:
7x = -84
Substitute value of x in equ.2
5 × -12 - 4y +40=0
-60-4y+40=0
-20-4y=0
4y= -20
y= -20/4
y= -5
PLS MARK ME AS A BRAINLIEST
Similar questions