Math, asked by mathewmozhoor, 11 months ago

11x²-54x+63 splitting the middle term

Answers

Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=3\:and\:\frac{21}{11}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {11x}^{2}  - 5x + 63 = 0 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt: \implies Value \: of \: x = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {11x}^{2}  - 54x + 63 = 0 \\  \\ \tt:  \implies  {11x}^{2}  - 33x - 21x + 63 = 0 \\  \\ \tt:  \implies 11x(x - 3) - 21(x - 3) = 0 \\  \\ \tt:  \implies (11x - 21)(x - 3) = 0 \\  \\  \green{\tt:  \implies x =  \frac{21}{11}  \: and \:  3} \\  \\  \bold{Alternate \: method : } \\  \\  \tt \circ \: a = 11 \:  \:  \:  \:  \:  \: b =  - 54 \:  \:  \:  \:  \:  \: c = 63\\ \\ \tt:  \implies x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\ \tt:  \implies  \frac{ - ( - 54) \pm \sqrt{ {( - 54)}^{2}  - 4 \times 11  \times 63} }{2 \times 11}  \\  \\ \tt:  \implies x =  \frac{54 \pm \sqrt{2916 - 2772} }{22}  \\  \\ \tt:  \implies x =  \frac{54 \pm \sqrt{144} }{22}  \\  \\ \tt:  \implies x =  \frac{54 \pm12}{22}  \\  \\ \tt:  \implies x = \frac{54 +  + 12}{22}  \: and \:  \frac{54 - 12}{22}  \\  \\ \tt:  \implies x =  \frac{66}{22}  \: and \:  \frac{42}{22}  \\  \\  \green{\tt:  \implies x = 3 \: and \:  \frac{21}{11} }

Answered by ғɪɴɴвαłσℜ
3

Aɴꜱᴡᴇʀ

➤ Roots of the equation are, \large\bf\frac{21}{11}\: and \: 3

_________________

Gɪᴠᴇɴ

➠ To use splitting method on 11x² - 54x + 63

_________________

ᴛᴏ ꜰɪɴᴅ

✴ The roots of the given equation?

_________________

Sᴛᴇᴘꜱ

✭ In this method we have to split the middle term (here 54x) in a defined manner (How do do that has been given as an attachment)

✭ Here the x² term has 11 as a cofficient so when splitting the middle term we have to multiply the coefficient of the x² term with the constant [Here 11 × (-63) = 693]

 \large \tt \dashrightarrow{}11 {x}^{2}  -33x - 21x + 63x = 0 \\  \\  \large  \tt \dashrightarrow11x(x - 3) - 21(x - 3) = 0 \\  \\  \large \tt \dashrightarrow \orange{(11x - 21)}{ \green{(x - 3) }}= 0

☞ So now let's equate each one with 0 to find the roots of the given equation,

 \large \tt \leadsto11x - 21 = 0 \\   \\  \large \tt  \pink{\leadsto{}x =  \frac{21}{11} }

And,

 \large \tt \longmapsto{}x  - 3 = 0 \\  \\ \large \tt  \pink{ \longmapsto{}x = 3}

_______________________________________

Similar questions