12-1
If
V2+1
= +
x + y 2, the values of x and y are
Answers
Answer:
Answer: The real values of x and y are
x = 5 and y = 2, -2.
Step-by-step explanation: We are given to find the real values of x and y or which the following equation holds :
(1+i)^2+(6+i)=(2+i)x~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)(1+i)
2
+(6+i)=(2+i)x (i)
We will be using the following value :
i^2=-1.i
2
=−1.
From equation (i), we have
\begin{gathered}(1+i)y^2+(6+i)=(2+i)x\\\\\Rightarrow y^2+iy^2+6+i=2x+ix\\\\\Rightarrow (y^2+6)+i(1+y^2)=2x+ix.\end{gathered}
(1+i)y
2
+(6+i)=(2+i)x
⇒y
2
+iy
2
+6+i=2x+ix
⇒(y
2
+6)+i(1+y
2
)=2x+ix.
Comparing the real and imaginary values from both sides of the above equation, we get
\begin{gathered}y^2+6=2x~~~\Rightarrow y^2=2x-6~~~~~~~~~~~~~~~~~~~~~~~~(ii)\\\\1+y^2=x~~~\Rightarrow y^2=x-1~~~~~~~~~~~~~~~~~~~~~~~~~~~(iii)\end{gathered}
y
2
+6=2x ⇒y
2
=2x−6 (ii)
1+y
2
=x ⇒y
2
=x−1 (iii)
Comparing equations (ii) and (iii), we get
\begin{gathered}2x-6=x-1\\\\\Rightarrow 2x-x=-1+6\\\\\Rightarrow x=5.\end{gathered}
2x−6=x−1
⇒2x−x=−1+6
⇒x=5.
From equation (iii), we get
\begin{gathered}y^2=5-1=4\\\\\Rightarrow y=\pm2.\end{gathered}
y
2
=5−1=4
⇒y=±2.
Thus, the real values of x and y are
x = 5 and y = 2, -2.