Math, asked by 3sanjayjbad, 2 months ago

12
12. If sin theta = 12/13 then evaluate (2sin theta -3cos theta/4sin thrta -9cos theta)​

Answers

Answered by osikachaudhary5
1

Answer:

Solution

 \sin( \alpha ) =  \frac{12}{13} \\  \cos( \alpha  )    =  \sqrt{1 -  \sin( ^{2} ) }  \\  =   \sqrt{1 - ( \frac{12}{13} } ) ^{2}  \\  =  \sqrt{1 -  \frac{144}{169} }  \\  =  \sqrt{ \frac{169 - 144}{144} }  \\  =  \sqrt{ \frac{25}{169} }  \\  =  \frac{5}{13} \\  \\  \\  \frac{2 \sin( \alpha ) -3 \cos( \alpha )   }{4 \sin( \alpha ) - 9 \cos( \alpha  )  }  \\  =  \frac{2 \times  \frac{12}{13} - 3 \times  \frac{5}{13}  }{4 \times  \frac{12}{13} - 9 \times  \frac{5}{13}  }   \\  =  \frac{ \frac{24}{13} -  \frac{15}{13}  }{ \frac{48}{13} -  \frac{45}{13}  } \\  =  \frac{ \frac{24 - 15}{13} }{ \frac{48 - 45}{13} }   \\  =  \frac{9}{3} \\  = 3

hope it's helpful

Mark me as brainliest

and like my answer.

Similar questions