Math, asked by reyansh977, 3 months ago

12^4×9^3×4÷6^3×8^2×27​

Answers

Answered by suraj5070
256

\sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \sf \bf \dfrac{{12}^{4} \times {9}^{3} \times 4}{{6}^{3} \times {8}^{2} \times 27}

\sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf \implies \dfrac{{12}^{4} \times {9}^{3} \times 4}{{6}^{3} \times {8}^{2} \times 27}

 \sf \bf \implies \dfrac{{3}^{4} \times {2}^{4} \times {2}^{4} \times {3}^{3} \times {3}^{3} \times {2}^{2} }{{2}^{3} \times {3}^{3} \times {2}^{2} \times {2}^{2} \times {2}^{2} \times {3}^{3}}

 \sf \bf \implies \dfrac{{2}^{4+4+2} \times {3}^{4+3+3}}{{2}^{3+2+2+2} \times {3}^{3+3}}

 \sf \bf \implies \dfrac{{2}^{10} \times {3}^{10}}{{2}^{9} \times {3}^{6}}

 \sf \bf \implies {2}^{10-9} \times {3}^{10-6}

 \sf \bf \implies {2}^{1} \times {3}^{4}

 \sf \bf \implies 2 \times 81

 \sf \bf \implies {\boxed {\boxed {162}}}

 \sf \bf {Used\:Formula}

\sf \bf {a}^{n} \times {a}^{m} ={a}^{n+m}

 \sf \bf \dfrac{{a}^{n}}{{a}^{m}} ={a}^{n-m}

\sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

\sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf \bf {Identities}

\sf \bf {a}^{n} \times {a}^{m} ={a}^{n+m}

 \sf \bf \dfrac{{a}^{n}}{{a}^{m}} ={a}^{n-m}

 \sf \bf {({{a}^{n})}^{m}} ={a}^{nm}

 \sf {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions