Math, asked by kp21903, 1 year ago

√((√12-√8) (√3+√2) /(5+√24))

Answers

Answered by sprao534
31
Please see the attachment
Attachments:
Answered by harendrachoubay
5

\sqrt{\dfrac{(\sqrt{12}-\sqrt{8})(\sqrt{3}+\sqrt{2})}{(5+\sqrt{24})} }=\sqrt{10-4\sqrt{6}}

Step-by-step explanation:

We have,

\sqrt{\dfrac{(\sqrt{12}-\sqrt{8})(\sqrt{3}+\sqrt{2})}{(5+\sqrt{24})} }

To find, \sqrt{\dfrac{(\sqrt{12}-\sqrt{8})(\sqrt{3}+\sqrt{2})}{(5+\sqrt{24})} }=?

=\sqrt{\dfrac{(2\sqrt{3}-2\sqrt{2})(\sqrt{3}+\sqrt{2})}{(5+\sqrt{24})} }

=\sqrt{\dfrac{2(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{(5+\sqrt{24})} }

=\sqrt{\dfrac{2(\sqrt{3}^2-\sqrt{2}^2)}{(5+\sqrt{24})}}

[ ∵ a^{2} -b^{2}=(a+b)(a-b)]

=\sqrt{\dfrac{2(3-2)}{(5+\sqrt{24})}}

=\sqrt{\dfrac{2}{(5+\sqrt{24})}}

Rationalising numerator and denominator, we get

=\sqrt{\dfrac{2}{(5+\sqrt{24})}\times \dfrac{5-\sqrt{24}}{5-\sqrt{24}} }

=\sqrt{\dfrac{2(5-\sqrt{24})}{(5^2-\sqrt{24}^2)}

=\sqrt{\dfrac{10-2\sqrt{24}}{(25-24)}

=\sqrt{\dfrac{10-2\sqrt{24}}{1}

=\sqrt{10-4\sqrt{6}}

Hence, \sqrt{\dfrac{(\sqrt{12}-\sqrt{8})(\sqrt{3}+\sqrt{2})}{(5+\sqrt{24})} }=\sqrt{10-4\sqrt{6}}

Similar questions