Math, asked by svgameboyytsai, 1 day ago

12. A hemispherical bowl has diameter 9 cm. The liquid is poured into cylindrical bottles of diameter 3 cm. and height 3 cm. if a full bowl of liquid is filled in the bottles,find how many bottles are required​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

A hemispherical bowl has diameter 9 cm. The liquid is poured into cylindrical bottles of diameter 3 cm. and height 3 cm. A full bowl of liquid is filled in the bottles.

Now,

Diameter of hemispherical bowl, d = 9 cm

Radius of hemispherical bowl, r = d/2 = 9/2 cm

We know,

Volume of hemisphere of radius r is given by

\boxed{\sf{  \: \: Volume_{(hemisphere)} \:  =  \:  \frac{2}{3} \: \pi \:  {r}^{3}  \:  \: }} \\

So, on substituting the value of r, we get

\rm \: Volume_{(liquid \: in \: hemispherical \: bowl)} \\

\rm \: =  \:  \frac{2}{3} \times \pi \times \dfrac{9}{2}  \times \dfrac{9}{2}  \times \dfrac{9}{2}  \\

\rm \: =  \:  \frac{243}{3}  \pi  \:  {cm}^{3}    \\

\rm\implies \:\boxed{\sf{  \:Volume_{(liquid \: in \: hemispherical \: bowl)} =  \frac{243\pi}{4} \:  {cm}^{3} \:  \: }} \\

Now,

Diameter of cylindrical bottle, D = 3 cm

So, Radius of cylindrical bottle, R = 3/2 cm

Height of cylindrical bottle, h = 3 cm

We know,

Volume of cylinder of radius R and height h is given by

\boxed{\sf{  \:Volume_{(cylinder)} \:  =  \: \pi \:  {R}^{2} \: h \: }} \\

So,

\rm \: Volume_{(liquid \: in \: cylindrical \: bottle)} \\

\rm \: =  \: \pi \times  \frac{3}{2} \times  \frac{3}{2} \times 3 \\

\rm \: =  \:  \frac{27\pi}{4}   \:  {cm}^{3} \\

\rm\implies \:\boxed{\sf{  \:Volume_{(liquid \: in \: cylindrical \: bottle)} =  \frac{27\pi}{4}  \:  \: }} \\

Now, Number of bottles required to fill whole liquid of hemispherical bowl are evaluated as

\rm \: Number_{(cylindrical\:bottles)} \\

\rm \: =  \:  \frac{Volume_{(liquid \: in \: hemispherical \: bowl)}}{Volume_{(liquid \: in \: cylindrical \: bottle)}}  \\

\rm \: =  \:  \frac{243\pi}{4} \div  \frac{27\pi}{4} \:  \\

\rm \: =  \: 9 \:

Hence,

\rm\implies \:\boxed{\sf{  \:Number_{(cylindrical\:bottles)} \:  =  \: 9 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Answered by maheshtalpada412
0

Step-by-step explanation:

Given: Diameter =9 cm , hence radius

 \tt(r)=\dfrac{9}{2} cm

Volume of of a hemispherical bowl

 \tt =  \dfrac{1}{2}\left[\dfrac{4}{3} \pi r^{3}\right]

 \text{Here \(  \tt \: r=\dfrac{9}{2} \)}

  \text{\( \Rightarrow \) Volume of hemispherical bowl \( = \) \( \dfrac{1}{2}\left[\dfrac{4}{3} \pi\left(\dfrac{9}{2}\right)^{3}\right] \)}

 \text{ \( \Rightarrow \) Volume of the bowl \(  \tt=\dfrac{243}{4} \pi \quad c \) \( \tt m^{3} \)}

 \text{Now to calculate volume of each cylindrical bottle we are given:}

Diameter: 3 cm ,

 \text{hence \( \tt r=\dfrac{3}{2} \)}

and height (h)=3 cm

 \text{Volume of the cylinder \( \tt =\pi r^{2} h \)}

 \text{\( \Rightarrow \) volume of cylinder \( =\pi \left(\dfrac{3}{2}\right)^{2} \times 3 \)}

 \text{\( \Rightarrow \) Volume of cylinder \(  \tt=\dfrac{27}{4} \pi  \:  \: cm ^{3} \)}

 \text{ Now a number of bottles \( = \) Volume of hemispherical bowl \(  \div \) volume of the cylinder}

 \text{ \( \Rightarrow \) Number of bottles} =  \dfrac{\dfrac{243} {\cancel{4}} \cancel \pi} { \dfrac{27} {\cancel{4}}\cancel\pi  } =  \dfrac{243}{27}

 \text{ \( \Rightarrow \) Number of bottles \( =9 \)}

Similar questions