Physics, asked by vanshkumar4407, 9 months ago

12. A particle is moving along a straight line and its position is given by the
relation
x=(t3 - 6t2- 15t +40) m
Find (a) The time at which velocity is zero.
(b) Position and displacement of the particle at that point.
(c) Acceleration for the particle at that line​

Answers

Answered by shadowsabers03
13

Position of the particle,

\sf{\longrightarrow x=t^3-6t^2-15t+40}

Initial position,

\sf{\longrightarrow x(0)=0^3-6(0)^2-15(0)+40}

\sf{\longrightarrow x(0)=40}

Then velocity,

\sf{\longrightarrow v=\dfrac{dx}{dt}}

\sf{\longrightarrow v=\dfrac{d}{dt}(t^3-6t^2-15t+40)}

\sf{\longrightarrow v=3t^2-12t-15}

For \sf{v=0,}

\sf{\longrightarrow 3t^2-12t-15=0}

\sf{\longrightarrow t^2-4t-5=0}

\sf{\longrightarrow t^2+t-5t-5=0}

\sf{\longrightarrow t(t+1)-5(t+1)=0}

\sf{\longrightarrow (t+1)(t-5)=0}

Since time is non - negative,

\sf{\longrightarrow\underline{\underline{t=5\ s}}}

Position of this particle at this time is,

\sf{\longrightarrow x(5)=5^3-6(5)^2-15(5)+40}

\sf{\longrightarrow x(5)=125-6\times25-15\times5+40}

\sf{\longrightarrow\underline{\underline{x(5)=-60\ m}}}

Displacement during this time will be,

\sf{\longrightarrow s(5)=x(5)-x(0)}

\sf{\longrightarrow s(5)=-60-40}

\sf{\longrightarrow \underline{\underline{s(5)=-100\ m}}}

Acceleration of the particle,

\sf{\longrightarrow a=\dfrac{dv}{dt}}

\sf{\longrightarrow a=\dfrac{d}{dt}(3t^2-12t-15)}

\sf{\longrightarrow a=6t-12}

At \sf{t=5\ s,}

\sf{\longrightarrow a(5)=6(5)-12}

\sf{\longrightarrow\underline{\underline{a(5)=18\ m\,s^{-2}}}}

Answered by sam041205
2

Please refer to the above picture

Attachments:
Similar questions