Math, asked by sinchanaan, 3 months ago

12. A triangle ABC is drawn to circumscribe a circle
of radius 4 cm such that the segments BD and
DC into which BC is divided by the point of
contact D are of lengths 8 cm and 6 cm
respectively (see Fig. 10.14). Find the sides AB
and AC

Answers

Answered by Adyasha777
10

Answer:

Let there is a circle having center O touches the sides AB and AC of the triangle at point E and F respectively.

Let the length of the line segment AE is x.

Now in △ABC,

CF=CD=6 (tangents on the circle from point C)

BE=BD=6 (tangents on the circle from point B)

AE=AF=x (tangents on the circle from point A)

Now AB=AE+EB

⟹AB=x+8=c

BC=BD+DC

⟹BC=8+6=14=a

CA=CF+FA

⟹CA=6+x=b

Now

Semi-perimeter, s=2(AB+BC+CA)

s=2(x+8+14+6+x)

s=2(2x+28)

⟹s=x+14

Area of the △ABC=s(s−a)(s−b)(s−c)

=(14+x)((14+x)−14)((14+x)−(6+x))((14+x)−(8+x))

Similar questions