Math, asked by akbarsyednaqi, 22 hours ago

12. (a) Two vertices of an equilateral triangle are (0, 3) and (4,3). Find the third vertex of the triangle. ​

Answers

Answered by veerapushkar
0

Answer:

(2,6.464)

Step-by-step explanation:

for any two points say, (x1,y1) and (x2,y2)

distance \: between \: two \: points  \\ = \sqrt{{(y2 - y1)}^{2} +  {(x2 - x1)}^{2}  }

let the unknown vertex be (x,y)

and distance between (0,3) : (4,3)

distance \: between (0,3) : (4,3) \:  \\  =  \sqrt{ {(3 - 3)}^{2}  +  {(4 - 0)}^{2} } \\  =  \sqrt{0 + 4}   =  \sqrt{4}  = 2 \\ so \: 4 =  \sqrt{ {(y - 3)}^{2}  +  {(x - 0)}^{2} } which \: gives \\  {y}^{2}  + 9 - 6y +  {x}^{2}  = 16 \\  {x}^{2}  +  {y}^{2}  - 6y = 7 -  -  -  -  - (1) \\ and \: 4 =  \sqrt{ {(3 - y)}^{2}  +  {(4 - x)}^{2} }  \: which \: gives \\ 9 +  {y}^{2}  - 6y + 16 +  {x}^{2}  - 8x = 16 \\  {x}^{2}  +  {y}^{2}  - 6y - 8x =  - 9 -  -  - (2) \\ from \: equation \: (2) \:  {x}^{2}  +  {y}^{2}  - 6y = 8x - 9 \: substitute \: this \: value \: in \: equation \: (1) \\ 8x - 9 = 7 \\ 8x = 16 \\ x =  \frac{16}{8}  = 2 \\ substitute \: value \: of \: x \: in \: equation \: (1) \\  {2}^{2}  +  {y}^{2}  - 6y = 7 \\  {y}^{2}  - 6y - 3 = 0 \\ then \: y = 6.464 \: or \:  - 0.464 \: as \: y \: should \: be \: positive \: y = 6.464

; (0,3) : (x,y); and (x,y) : (4,3) should be equal as the triangle should be equilateral.

Similar questions