Math, asked by anuishere, 1 month ago

12 class maths determinants please help me out​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\: \begin{gathered}\sf \left | \begin{array}{ccc}cosec \theta \: &1&0\\1&2cosec \theta& 1\\0& 1&2cosec \theta\end{array}\right | \end{gathered}

\rm :\longmapsto\:OP \: R_2 \:  \to \: cosec \theta \: R_2

\rm  \:  = \dfrac{1}{cosec \theta} \: \begin{gathered}\sf \left | \begin{array}{ccc}cosec \theta \: &1&0\\cosec \theta&2cosec^{2} \theta& cosec \theta\\0& 1&2cosec  \theta\end{array}\right | \end{gathered}

\rm :\longmapsto\:OP \: R_2 \:  \to \:  \: R_2 - R_1

\rm  \:  = \dfrac{1}{cosec \theta} \: \begin{gathered}\sf \left | \begin{array}{ccc}cosec \theta \: &1&0\\0&2cosec^{2} \theta - 1& cosec \theta\\0& 1&2cosec  \theta\end{array}\right | \end{gathered}

Now, expand along Column 1, we get

\rm  \:  = \dfrac{1}{cosec \theta} \times cosec \theta (4{cosec}^{3}\theta \: - 2cosec \theta - cosec \theta)

\rm  \:  =  4{cosec}^{3}\theta \: - 3cosec \theta

\rm :\longmapsto\: \begin{gathered}\sf \left | \begin{array}{ccc}cosec \theta \: &1&0\\1&2cosec \theta& 1\\0& 1&2cosec \theta\end{array}\right | \end{gathered} = 4 {cosec}^{3}\theta - cosec\theta  -  - (1)

Now,

Consider,

\rm :\longmapsto\:tan\dfrac{\theta}{2} + cot\dfrac{\theta}{2}

\rm \:  =  \:  \:\dfrac{sin\dfrac{\theta}{2}}{cos\dfrac{\theta}{2}}  + \dfrac{cos\dfrac{\theta}{2}}{sin\dfrac{\theta}{2}}

\rm \:  =  \:  \:\dfrac{ {sin}^{2}\dfrac{\theta}{2} +  {cos}^{2}\dfrac{\theta}{2}}{sin\dfrac{\theta}{2} \: cos\dfrac{\theta}{2}}

\rm \:  =  \:  \:\dfrac{ 1}{sin\dfrac{\theta}{2} \: cos\dfrac{\theta}{2}}

\rm \:  =  \:  \:\dfrac{2}{2 \: sin\dfrac{\theta}{2} \: cos\dfrac{\theta}{2}}

\rm \:  =  \:  \:\dfrac{2}{sin\theta \:}

\rm \:  =  \:  \:2cosec\theta \:

Now,

Consider RHS

\rm :\longmapsto\:\dfrac{1}{2}\bigg( {tan}^{3}\dfrac{\theta}{2}  +  {cot}^{3}\dfrac{\theta}{2} \bigg)

We know that

\rm :\longmapsto\: {x}^{3} +  {y}^{3} =  {(x + y)}^{3} - 3xy(x + y)

So,

Consider,

\rm :\longmapsto\:{tan}^{3}\dfrac{\theta}{2}  +  {cot}^{3}\dfrac{\theta}{2}

\rm \:  =  \:  \: {\bigg(tan\dfrac{\theta}{2} + cot\dfrac{\theta}{2}\bigg) }^{3}  -3tan\dfrac{\theta}{2}cot\dfrac{\theta}{2} \bigg(tan\dfrac{\theta}{2} + cot\dfrac{\theta}{2}\bigg)

\rm \:  =  \:  \: {\bigg(tan\dfrac{\theta}{2} + cot\dfrac{\theta}{2}\bigg) }^{3}  -3 \bigg(tan\dfrac{\theta}{2} + cot\dfrac{\theta}{2}\bigg)

\rm \:  =  \:  \: {(2cosec\theta \:)}^{3} - 3(2cosec\theta \:)

\rm \:  =  \:  \:8 {cosec}^{3}\theta \: - 6 {cosec}\theta \:

\bf\implies \: {tan}^{3}\dfrac{\theta}{2} +  {cot}^{3}\dfrac{\theta}{2}=\:8 {cosec}^{3}\theta \: - 6 {cosec}\theta \:

\bf\implies \: {tan}^{3}\dfrac{\theta}{2} +  {cot}^{3}\dfrac{\theta}{2}=2(4{cosec}^{3}\theta- 3{cosec}\theta)

\bf\implies \:\dfrac{1}{2}\bigg({tan}^{3}\dfrac{\theta}{2} +  {cot}^{3}\dfrac{\theta}{2}\bigg)=4{cosec}^{3}\theta- 3{cosec}\theta -  - (2)

Hence, From equation (1) and equation (2), we concluded that

\rm :\longmapsto\: \begin{gathered}\bf \left | \begin{array}{ccc}cosec \theta \: &1&0\\1&2cosec \theta& 1\\0& 1&2cosec \theta\end{array}\right | \end{gathered} = \dfrac{1}{2}\bigg( {tan}^{3}\dfrac{\theta}{2} +  {cot}^{3}\dfrac{\theta}{2}\bigg)

Hence, Proved

Similar questions