12.Find dy/dx of the functions given.
x^y + y^x = 1
Attachments:
![](https://hi-static.z-dn.net/files/db4/07dbef77b3b334714f45a5f7a254aa93.jpg)
Answers
Answered by
1
Answer:
x^y=x^y
ln x^y =ln x^y
x^y = e^(ln x^y) = e^(y lnx)
d(e^(y lnx))/dx
= e^(y lnx) d(y lnx)/dx
= e^(y lnx) (y d(lnx)/dx + lnx dy/dx)
= e^(y lnx) (y/x + lnx dy/dx)
= x^y (y/x + lnx dy/dx)
y^x=y^x
ln y^x = ln y^x
y^x = e^(ln y^x) = e^(x lny)
d(e^(x lny))/dx
= e^(x lny) d(x lny))/dx
= e^(x lny) (x d(lnx)/dx + lny)
= e^(x lny) (x(1/y)(dy/dx) + lny)
= y^x (x(1/y)(dy/dx) + lny)
x^y (y/x + lnx dy/dx) + y^x ((x/y)(dy/dx) + lny) =0
Similar questions