Math, asked by renu75653, 9 months ago

12. Find the area of a rectangular park whose length and breadth are 15 2/3 m and 11 1/2 m , respectively ​

Answers

Answered by Anonymous
54

Given

  • Length of rectangle = 15 ⅔ m
  • Breadth of rectangle = 11 ½ m

Find out

  • Area of rectangle

Solution

As we know that

Area of rectangle

➟ Length × breadth

➟ 15 ⅔ × 11 ½

➟ 47/3 × 23/2

➟ 1081/6

➟ 180.16 m²

Hence,

  • Area of rectangle is 180.16

Additional Information

  • Area of circle = πr²

  • Circumference of circle = 2πr

  • Perimeter of rectangle =2(l + b)

  • Perimeter of square = 4 × side

  • Area of square = side × side

  • Area of rhombus = ½ × product of diagonals

  • Area of Parallelogram = base × height

  • Area of trapezium = ½ × sum of parallel sides × height

\rule{200}3


BrainlyRaaz: Nice ♥️
Answered by AdorableMe
123

Given

\bullet\ \sf{Length\ of\ a\ rectangular\ park=15\dfrac{2}{3}\ m }\\\\\bullet\ \sf{Breadth\ of\ the\ rectangular\ park=11\dfrac{1}{2}\ m }

To Find

\sf{The\ area\ of\ the\ rectangular\ park.}

Solution

\sf{We\ know,\ for\ a\ rectangle,}

\boxed{\sf{\color{magenta}{Area=Length \times Breadth}}}

\textsf{Substituting the values :-}

\sf{\longrightarrow A=15\dfrac{2}{3}\times11\dfrac{1}{2}  }\\\\\sf{\longrightarrow A=\dfrac{(3\times15)+2}{3}\times \dfrac{(2\times11)+1}{2} }\\\\\sf{\longrightarrow A=\dfrac{45+2}{3} \times \dfrac{22+1}{2}}\\\\\sf{\longrightarrow A=\dfrac{47}{3} \times \dfrac{23}{2}}\\\\\sf{\longrightarrow A=\dfrac{1081}{6} }\\\\\boxed{\boxed{ \color{lime}{\sf{\longrightarrow A= 180\dfrac{1}{6}\ m^2}}}}

\mathbf{Hence,\ the\ area\ of\ the\ rectangular }\\\mathbf{\ park\ is\ 180\dfrac{1}{6}\ m^2.}

Similar questions