Math, asked by veenamuskan83, 1 month ago

12. Find the derivative of 2
 {2}^{x} sinxlnx

Answers

Answered by snikki961
0

Answer:

2^x( ln(2).ln(x)sinx + cosx.ln(x)+ (sinx/x))

Answered by manissaha129
1

Answer:

We know that,

When y=uvw, where u, v & w are functions

dy/dx=(vw)du/dx+(uw)dv/dx+(uv)dw/dx

Therefore,

→y =  {2}^{x}  \sin(x)ln(x)  \\ \frac{dy}{dx}  =  {2}^{x}  ln(2)  \sin(x)  ln(x)  +  {2}^{x}  \cos(x)  ln(x)  +  \frac{ {2}^{x}  \sin(x) }{x}\\ \boxed{\frac{dy}{dx}  =  {2}^{x}  [ln(2)  \sin(x)  ln(x)  + \cos(x)  ln(x)  +  \frac{ \sin(x) }{x}]}✓

Similar questions