Math, asked by kuna29, 2 months ago

12. Find the equation of ellipse if it passes through 3,2
whose centre (0,0) eccentricity root 3 by 2
and the major axis

on y-axis.​

Answers

Answered by Sweetoldsoul
6

Answer:

\Large \text { $\frac{y^{2} }{40 } \: + \: \frac{x^{2} }{10} \: = \: 1 $}

--  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --

Step-by-step explanation:

TO KNOW  :-

  • The general eqn. of ellipse with center (0,0) and major axis on y-axis :-

            \boxed{ \: \frac{y^{2} }{a^{2} } \: + \: \frac{x^{2} }{b^{2} } \: = \: 1 \;}

  • If a  point lies on the ellipse then it should satisfy the equation of the ellipse.
  • Eccentricity of an ellipse (e) =  \sqrt{1\: - \: \frac{b^{2}}{a^{2}} }

POINTS TO NOTE ABOUT THIS ELLIPSE :-

  • Center of the ellipse = (0, 0)
  • Eccentricity (e) = \sqrt{3}/ 2
  • Major axis on y-axis
  • Passes through the point (3, 2)

SOLUTION :-

Since, the major axis of the ellipse lies on the Y-Axis.

The general eqn. of ellipse with center (0,0) :-

\boxed{ \: \frac{y^{2} }{a^{2} } \: + \: \frac{x^{2} }{b^{2} } \: = \: 1 \;}

Here,

  1. a = length of semi-major axis
  2. b = length of semi-minor axis

Let, the point (3, 2) be P.

  • Now, if the point P lies on the ellipse then it should satisfy the equation of the ellipse. Therefore :-

=> \: \frac{y^{2} }{a^{2} } \: + \: \frac{x^{2} }{b^{2} } \: = \: 1

=> \: \frac{2^{2} }{a^{2} } \: + \: \frac{3^{2} }{b^{2} } \: = \: 1

=> \frac{4b^{2} \:+ \: 9a^{2}}{a^{2}b^{2}} =1

=> 4b² + 9a² = a²b² . . . . . . . . . . (i)

  • Eccentricity of an ellipse (e) =  \sqrt{1\: - \: \frac{b^{2}}{a^{2}} }

=> e^{2} = \frac{a^{2} \: - \: b^{2}}{a^{2}}

=> (\frac{\sqrt{{3} } }{2} )^{2} = \frac{a^{2}\: - \: b^{2}}{a^{2}}

=> \frac{3 }{4} = \frac{a^{2}\: - \: b^{2}}{a^{2}}

=> 3a² = 4a² - 4b²

=> 4b² = a² . . . . . . . . . . . . . . . (ii)

  • Evaluating eqn. (i) and (ii) :-

=> 4b² + 9(4b²) = (4b²)b²   [substituting the value of a² from eqn (i) in eqn (ii)]

{Cancelling 4b² from both the sides} -

=> 1 +9 = b²

=> 10 = b²

from eqn (i), 4b² = a²

∴ => 4 × 10 = a²

=> 40 = a²

Hence, the equation of the ellipse is :-

=> \boxed{\Large \text { $\frac{y^{2} }{40 } \: + \: \frac{x^{2} }{10} \: = \: 1 $} }

Similar questions