Math, asked by bsrijitkumar1925, 1 month ago

12. Find the value of x and y 4x+7y=22, 5x-3y= 4 (Using Cross Multipfication method)​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given pair of equations is

\red{\rm :\longmapsto\:4x + 7y = 22}

and

\red{\rm :\longmapsto\:5x - 3y = 4}

Now, using Cross multiplication method, we have

 \purple{\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  7 & \sf  22 & \sf 4 & \sf  7\\ \\ \sf  - 3 & \sf 4 & \sf 5 & \sf  - 3\\ \end{array}} \\ \end{gathered}}

So, we have

 \green{\rm :\longmapsto\:\dfrac{x}{28 - ( - 66)}  = \dfrac{y}{110 - 16}  = \dfrac{ - 1}{ - 12 - 35} }

 \green{\rm :\longmapsto\:\dfrac{x}{28 + 66}  = \dfrac{y}{94}  = \dfrac{ - 1}{ -47} }

 \green{\rm :\longmapsto\:\dfrac{x}{94}  = \dfrac{y}{94}  = \dfrac{1}{ 47} }

On multiply each term by 47, we get

 \green{\rm :\longmapsto\:\dfrac{x}{2}  = \dfrac{y}{2}  = 1}

 \green{\bf\implies \:x = 2 \:  \:  \: and \:  \:  \: y = 2}

Verification :-

Consider first equation,

\red{\rm :\longmapsto\:4x + 7y = 22}

On substituting the values of x and y, we get

\red{\rm :\longmapsto\:4(2) + 7(2) = 22}

\red{\rm :\longmapsto\:8 + 14 = 22}

\red{\rm :\longmapsto\:22 = 22}

Hence, Verified

Consider second equation

\blue{\rm :\longmapsto\:5x - 3y = 4}

On substituting the values of x and y, we get

\blue{\rm :\longmapsto\:5(2) - 3(2) = 4}

\blue{\rm :\longmapsto\:10 - 6 = 4}

\blue{\rm :\longmapsto\:4 = 4}

Hence, Verified

Similar questions