12. Given that sin 0 = a\b
then cos 0 is equal to
Answers
Answered by
2
Answer:Answer:
cos\theta =\frac{\sqrt{(b^{2}-a^{2})}}{b}
Step-by-step explanation:
Given sin\theta = \frac{a}{b} ---(1)
We know the Trigonometric identity:
\boxed {cos^{2}\theta=1-sin^{2}\theta}
Now ,
cos\theta = \sqrt{1-sin^{2}\theta}
= \sqrt{1-\left(\frac{a}{b}\right)^{2}}
\* From (1)*\
= \sqrt{\frac{b^{2}-a^{2}}{b^{2}}}
= \frac{\sqrt{(b^{2}-a^{2})}}{b}
Therefore,
cos\theta =\frac{\sqrt{(b^{2}-a^{2})}}{b}
Explanation:
Similar questions