Math, asked by datirpratima12, 2 months ago

12
go) Find the middle terms in the expanision (x/y+y/x) 12​

Answers

Answered by mathdude500
2

Basic Concept :-

 \sf\: Let  \: us  \: consider \: the \: expansion \: of \:  {(x + a)}^{n} \: then

 \sf\: middle \: term \: depends \: on \: value \: of \: n.

Two cases arises :-

Case 1 :- If n is even, then there is only middle term, i.e.

\rm :\longmapsto\:T_{\frac{n + 2}{2}} \: term

Case 2 :- If n is odd, then there are 2 middle terms.

\rm :\longmapsto\:T_{\frac{n + 1}{2}} \:and \:  T_{\frac{n + 3}{2}} \: term

and

General term of Binomial expansion is given by

\rm :\longmapsto\:T_{r + 1} \:  =  \: \:^n C_r \:  {x}^{n - r} \:  {a}^{r}

and

\boxed{\sf \:^{n}C_r=\dfrac{n!}{(n-r)!\times r!}}

Let's solve the problem now!!!

Given expansion is

\green{\rm :\longmapsto\: \bf{ \:  {\bigg(\dfrac{x}{y}  + \dfrac{y}{x}\bigg) }^{12}}}

Here, n = 12

which is even,

This implies, there is only 1 middle term, i.e

\blue{\rm :\longmapsto\: \bf \:T_{\dfrac{12 + 2}{2}} = T_7}

Now,

\rm :\longmapsto\:T_7

\rm \:  =  \:  \: \:T_{6 + 1}

\rm \:  =  \:  \: \:^{12} C_6 \:  {\bigg(\dfrac{x}{y}\bigg) }^{12 - 6}{\bigg(\dfrac{y}{x}\bigg) }^{6}

\rm \:  =  \:  \: \:^{12} C_6 \:  {\bigg(\dfrac{x}{y}\bigg) }^{6}{\bigg(\dfrac{y}{x}\bigg) }^{6}

\rm \:  =  \:  \: \:^{12} C_6 \:  {\bigg(\dfrac{x}{y}\bigg) }^{6}{\bigg(\dfrac{x}{y}\bigg) }^{ - 6}

\rm \:  =  \:  \: \:^{12} C_6 \:

\rm \:  =  \:  \: \dfrac{12!}{(12-6)!\times 6!}

\rm \:  =  \:  \: \dfrac{12 \times 11 \times 10 \times 9 \times 8 \times 7 \times \cancel {6!}}{6!\times  \cancel{6!}}

\rm \:  =  \:  \: \dfrac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 3 \times 2 \times 1}

\rm \:  =  \:  \: 924

Hence,

\green{\rm :\longmapsto\: \bf{ \:Middle \: term \: in \:  {\bigg(\dfrac{x}{y}  + \dfrac{y}{x}\bigg) }^{12} \:  =  \: 924}}

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \: \:^n C_r + \:^n C_{r - 1} \:  = \:^{n + 1} C_r}}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \: \dfrac{\:^n C_r}{\:^n C_{r - 1}}  = \dfrac{n - r + 1}{r} }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \: \:^n C_x = \:^n C_y \implies \: x = y \: or \: n = x + y}}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \: \:^n C_0 = \:^n C_n \:  =  \: 1 }}}}}} \\ \end{gathered}

Similar questions