12) If 4x – 3y =10 and xy=-1, then find the value of 16x2 +9y2.
Answers
Answer:
Step-by-step explanation:
Correct Question :--- If 2x + 3y =10 and xy 5, find the value of 4x² + 9y² ...
Solution :---
→ 2x + 3y = 10
Squaring both sides we get,
→ (2x + 3y)² = (10)²
Using (a+b)² = a² + b² + 2ab now, we get,
→ 4x² + 9y² + 2*2x*3y = 100
→ 4x² + 9y² + 12xy = 100
Putting value of xy = 5 now,
→ 4x² + 9y² + 12*5 = 100
→ 4x² + 9y² + 60 = 100
→ 4x² + 9y² = 100 - 60
→ 4x² + 9y² = 40 (Ans)..
______________________________
we also have to Find value of (2x+3y) when xy = 2 .
we have now, = 4x² + 9y² = 40
→ 4x² + 9y² = 40
Adding 12xy both sides we get,
→ 4x² + 9y² + 12xy = 40 + 12xy
Putting value of xy in RHS we get,
→ 4x² + 9y² + 12xy = 40 + 12*2
→ 4x² + 9y² + 12xy = 64
→ (2x+3y)² = 64
Square root both sides now we get,
→ (2x+3y) = ± 8 .
Hence, value of (2x+3y) will be 8 or (-8) when xy is 2.
Answer:
Required value of is 76
Step-by-step explanation:
Given,
and
Here we want to find value of
So,
Here applied formula,
This is a problem of Algebra.
Some important Algebra formulas.
(a + b)² = a² + 2ab + b²
(a − b)² = a² − 2ab − b²
(a + b)³ = a³ + 3a²b + 3ab² + b³
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)³ − 3ab(a + b)
a³ - b³ = (a -b)³ + 3ab(a - b)
a² − b² = (a + b)(a − b)
a² + b² = (a + b)² − 2ab
a² + b² = (a − b)² + 2ab
a³ − b³ = (a − b)(a² + ab + b²)
a³ + b³ = (a + b)(a² − ab + b²)
Know more about Algebra,
1) https://brainly.in/question/13024124
2) https://brainly.in/question/1169549