Math, asked by hunny800, 6 months ago

12. If 5th and 6th terms of an A.P. are respectively<br />6 and 5, find the 11th term of the A.P.​

Answers

Answered by Anonymous
6

GIVEN

If 5th and 6th terms of an A.P. are respectively 6 and 5.

To Find

The 11th term of the A.P.

SOLUTION

We know that,

\large{\underline{\boxed{\sf{a_{n}=a+(n-1)d}}}}

where,

  • a is the first term of AP
  • d is the common difference
  • \small{\bf{a_{n}\:is\:the\:nth\:term.}}

It is said that 5th and 6th terms of an A.P. are respectively 6 and 5.

So,

\large\implies{\sf{a_{5}=a+(n-1)d}}

\large\implies{\sf{6=a+(5-1)d}}

\large\implies{\sf{6=a+4d}}

\large\therefore\boxed{\sf{a+4d=6\red{----eq.(i)}}}

\large\implies{\sf{a_{6}=a+(n-1)d}}

\large\implies{\sf{5=a+(6-1)d}}

\large\implies{\sf{5=a+5d}}

\large\therefore\boxed{\sf{a+5d=5\red{----eq.(ii)}}}

Now by subtracting eq.(ii) from eq.(i),

\large{\sf{a+4d=6}}---eq.(i)

\large{\sf{a+5d=5}}---eq.(ii)

\large{\sf{(+)\cancel{a}\:\:\:\:\:\:+\:\:4d=(+)6}}

\large{\sf{(-)\cancel{a}+(-)5d=(-)5}}_____________________________

\large\implies{\sf{4d-5d=6-5}}

\large\implies{\sf{-d=1}}

\large\therefore\boxed{\sf{Common\:Difference(d)=-1}}

Now putting d = -1 in eq.(i)

\large\implies{\sf{a+4\times(-1)=6}}

\large\implies{\sf{a+(-4)=6}}

\large\implies{\sf{a-4=6}}

\large\implies{\sf{a=6+4}}

\large\therefore\boxed{\sf{a=10}}

Now,

11th term of AP,

\large\implies{\sf{a_{n}=a+(n-1)d}}

\large\implies{\sf{a_{11}=10+(11-1)(-1)}}

\large\implies{\sf{a_{11}=10+10\times(-1)}}

\large\implies{\sf{a_{11}=10+(-10)}}

\large\implies{\sf{a_{11}=10-10}}

\large\therefore\boxed{\sf{a_{11}=0}}

\large{\green{\underline{\boxed{\therefore{\bf{11th\:term\:of\:AP\:is\:0.}}}}}}

Similar questions