12
If 8 sino = 4 + coso, find the value of tano.
Answers
Step-by-step explanation:
Given that
8sinθ=4+cosθ
8sinθcosθ=4+cosθcosθ
8tanθ=4secθ+1
4secθ=8tanθ−1
(4secθ)2=(8tanθ−1)2
16sec2θ=64tan2θ−16tanθ+1
16(1+tan2θ)=64tan2θ−16tanθ+1
16+16tan2θ=64tan2θ−16tanθ+1
48tan2θ−16tanθ−15=0
solving above quadratic equation for tanθ as follows
tanθ=−(−16)±(−16)2−4(48)(−15)√2(48)
tanθ=16±5696
tanθ=34 or −512
Both the above values of tanθ are acceptable as they duly satisfy the (original) given equation: 8sinθ=4+cosθ
Alternatively:—
Let theta=x
8sinx=4+cosx
Divide both side by cosx
8tanx=4secx+1
8 tanx -1= 4 secx , squaring both sides
64 tan^2x -16 tanx +1 =16sec^2x
64 tan^2x -16tanx +1= 16(1+tan^2x)
48tan^2x -16 tanx -15 =0
48 tan^2x-36tanx+20tanx-15=0
12tanx(4tanx-3)+5(4tanx-3)=0
(4tanx-3)(12tanx+5)=0
Either 4tanx-3=0 => tanx=3/4
Or 12tanx+5=0 => tanx = -5/12.
tan x= 3/4 , - 5/12
●●●●●●●●●●●ANSWER ●●●●●●●●●●●●