Math, asked by preeti7798, 9 months ago

12. If A = 45°, verify that:
(i) sin 2A = 2 sin Acos A​

Answers

Answered by Anonymous
11

Given :-

  • A = 45°

To Prove that :-

  • sin \: 2a = 2sin \: a \: cos \: a

Solution :-

: \implies \: sin \: 2a = 2sin \: a \: cos \: a

Putting the value of a

: \implies \: sin \: (2 \times 45) = 2 \times sin \: 45 \times cos \: 45 \\  \\ : \implies \: sin \: 90 = 2 \times sin \: 45 \times cos \: 45

We know that :-

  • sin \: 90 = 1
  • sin \: 45 =  \frac{1}{ \sqrt{2} }
  • cos \: 45 =  \frac{1}{ \sqrt{2} }

So,

: \implies1 = 2 \times  \frac{1}{ \sqrt{2} } \times  \frac{1}{ \sqrt{2} }   \\  \\ : \implies1 = 2 \times  \frac{1}{2}  \\  \\ : \implies1 = 1 \\  \\ l.h.s. = r.h.s.

Hence proved !!

Answered by Anonymous
4

Answer:

follow me ..................plz

Similar questions