12. If a and ß are the zeros of the quadratic polynomial p(s) = 3s2 – 6s + 4, find the value of
a/B+B/a+2[1/alpha +1/beta] +3alpha×beta
Answers
Given :-
- α and ß are the zeros of the quadratic polynomial p(s) = 3s² – 6s + 4
To find:-
- Value of α/β + β/α + 2(1/α +1/β) +3αβ .
Solution:-
We know,
→α+ β = -b/a
→αβ = c/a
Given,
=> a = 3
=> b=-6
=> c= 4
Now,
⇒ α+ β = 6/3 = 2
⇒ αβ =4/3
Also,
⇒ α+β=2
Squaring on both sides,
⇒ α² + β² + 2αβ = 4
⇒ α²+β² = 4-2αβ = 4 - 2(4/3)
⇒α²+β² = 4/3 .
Now, we need to find the value of :
→ α/β + β/α + 2(1/α +1/β) +3αβ .
This becomes,
→α²+β² /αβ + 2 (α+β/αβ) + 3αβ
Now, substitute the value of α²+β² in this equation.
⇒ α²+β² /αβ + 2 (α+β/αβ) + 3αβ
⇒ 1 + 4×3 /4 +4
⇒ 1 + 3 + 4 .
⇒ 8.
Hence, value of α/β + β/α + 2(1/α +1/β) +3αβ is 8 .
_______________________________
Given :-
α and ß are the zeros of the quadratic polynomial p(s) = 3s² – 6s + 4
To find:-
Value of α/β + β/α + 2(1/α +1/β) +3αβ .
Solution:-
We know,
→α+ β = -b/a
→αβ = c/a
Given,
=> a = 3
=> b=-6
=> c= 4
Now,
⇒ α+ β = 6/3 = 2
⇒ αβ =4/3
Also,
⇒ α+β=2
Squaring on both sides,
⇒ α² + β² + 2αβ = 4
⇒ α²+β² = 4-2αβ = 4 - 2(4/3)
⇒α²+β² = 4/3 .
Now, we need to find the value of :
→ α/β + β/α + 2(1/α +1/β) +3αβ .
This becomes,
→α²+β² /αβ + 2 (α+β/αβ) + 3αβ
Now, substitute the value of α²+β² in this equation.
⇒ α²+β² /αβ + 2 (α+β/αβ) + 3αβ
⇒ 1 + 4×3 /4 +4
⇒ 1 + 3 + 4 .
⇒ 8.
Hence, value of α/β + β/α + 2(1/α +1/β) +3αβ is 8 .
_______________________________