Physics, asked by g65713106, 10 months ago


12.) If an object of 10 cm height is placed at a distance of 36 cm from a concave mirror of focal length 12 cm,find the position,nature and height of the image.​

Answers

Answered by Anonymous
11

 \large\bf\underline {To \: find:-}

  • we need to find the position, nature and height of image.

 \large\bf\underline{Given:-}

  • If an object of 10 cm height is placed at a distance of 36 cm from a concave mirror of focal length 12 cm

 \huge\bf\underline{Solution:-}

  • size of object (h) = 10cm
  • object distance (u) = - 36cm
  • Focal length (f) = -12cm
  • image height (h') = ?

By using mirror Formula :-

 \:  \:  \:  \:  \:  \:  \huge{\dag} \large{ \underline{ \boxed{ \red{ \bf \:  \frac{1}{v} +  \frac{1}{u} =  \frac{1}{f}   }}}}

 \dashrightarrow \rm\:  \frac{1}{v}  =  \frac{1}{f}  -  \frac{1}{u}

 \dashrightarrow \rm\:  \frac{1}{v}  =  \frac{1}{( - 12)}  -  \frac{1}{ ( - 36)}

 \dashrightarrow \rm\:  \frac{1}{v}  =  -  \frac{  1}{12}  +  \frac{1}{36}

 \dashrightarrow \rm\:  \frac{1}{v}  =  \frac{ - 3 + 1 \: }{36}

 \dashrightarrow \rm\:  \frac{1}{v}  =  \frac{ - 2}{36}

 \dashrightarrow \rm\:  \frac{1}{v}  =  \frac{ - 1}{18}

 \dashrightarrow \rm\: - v = 18

\dashrightarrow \bf\:v =  - 18

we know that,

 \bf \star \green{m =  \frac{h'}{h} =   - \frac{  v}{u}  }

  \rightarrowtail \: \rm \frac{h'}{10}  =  -  \frac{( - 18)}{ (- 36)}

\rightarrowtail \: \rm \frac{h'}{10} =  -  \frac{18}{36}

\rightarrowtail \: \rm \frac{h'}{10} =  -  \frac{1}{2}

\rightarrowtail \: \rm  \: 2h' =  - 10

\rightarrowtail \: \rm  \: h' =  \frac{ - 10}{2}

\rightarrowtail \: \bf \: h' =  - 5cm

Hence,

★The position of image is 18cm in front of mirror.

★ Height of image is -5cm

The nature of the image is real and inverted .

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
26

1/v + 1/u = 1/f

u = -36cm f = -12 cm

1/v = -1/12 + 1/36 = -1/18 so v= -18 cm

m = - v/u = -1/2

height of the image = 10 cm * -1/2 = -5 cm

so image is real inverted and of height 5 cm.

Similar questions