Math, asked by abhaygill, 11 months ago

12. If f(x) = x² – 5x + 7, evaluate f(2) – f(-1) + f(1/3)​

Answers

Answered by nirjalsharma100
3

Answer:

∴ f(2)-f(-1)+f(1/3) = -59/9

Step-by-step explanation:

Given,

f(x) = x²-5x+7

f(2)-f(-1)+f(1/3) = ?

Now,

f(2) = 2²-5×2+7 = 4-10+7 = 1

Again,

f(-1) = (-1)²-5×(-1)+7 = 1+5+7 = 13

Again,

f(1/3) = (1/3)²-5×1/3+7 = 1/9-5/3+7 = (1-15+63)/9 = 49/9

Therefore,

f(2)-f(-1)+f(1/3) = 1-13+49/9 = (9-117+49)/9 = -59/9

Answered by Anonymous
16

\huge\underline\mathfrak{Solution:}

Given,

f(x) =  {x}^{2}  - 5x + 7 \\ f(2) =  {(2)}^{2} - (5)2 +  7 \\  =  > f(2) = 4 - 10 + 7 \\  =  > f(2) = 1 \\ f( - 1) =  {( - 1)}^{2}  - 5( - 1) + 7 \\  =  > f( - 1) = 1 + 5 + 7 = 13 \\  \\ f \frac{(1)}{(3)  }   =  \frac{(1)}{(3)}  {}^{2} - 5 \frac{(1)}{(3)}    + 7 \\  =  > f \frac{(1)}{(3)}  =  \frac{1}{9}  -  \frac{5}{3} + 7 \\  =  > f \frac{(1)}{(3)}   =  \frac{1 - 15 + 63}{9 }  \\  =  > f \frac{(1)}{(3)}  =  \frac{64 - 15}{9}  \\  =  > f \frac{(1)}{(3)}  =  \frac{49}{9}  \\  \\ now \: f(2) - f( - 1) + f \frac{1}{3}  \\  = 1 - 13 +  \frac{49}{9}  \\  =  - 12 +  \frac{49}{7}  \\  =  \frac{ - 84 + 49}{7}  \\  =  \frac{ - 35}{7}  \\  =  - 5

\huge{\boxed{\boxed{Ans.-5}}}

Similar questions