12.If sec θ + tan θ = 7, then evaluate sec θ – tan θ.
Answers
Answered by
1
The value of sec²θ + tan²θ is 3√5.
Explanation:
(secθ + tanθ)² = (7)²
sec²θ + tan²θ + 2•secθ•tanθ = 49. (as tanθ × cosθ = 1)
sec²θ + tan²θ +2 = 49
sec²θ + tan²θ = 49– 2
sec²θ + tan²θ = 47
Now,
(secθ – tanθ)² = sec²θ + tan²θ – 2•secθ•tanθ
(secθ – tanθ)² = 47 – 2
secθ – tanθ = √45
secθ – tanθ = 3√5
Similar questions