Math, asked by narendraram1968, 5 months ago

12. If tan0 + cot0 = 5, find the value of tan²0 + cot?0.​

Answers

Answered by MagicalBeast
5

Given :

tanθ + cotθ = 5

To find :

tan²θ + cot²θ

Identity used :

  • (a+b)² = a² + b² + 2ab
  • tanθ = sinθ ÷ cosθ
  • cotθ = cosθ ÷ sinθ

Solution :

We are given that, tanθ + cotθ = 5

On squaring both side, we get;

 \sf \implies \:  ( \: \tan ( \theta) \:  +  \: \cot( \theta) )^{2}   \:   = \: {5}^{2}  \\  \\ \sf \implies \:  \:  \tan^{2} ( \theta)  +  \:  \cot^{2} ( \theta)  + 2 \times  \tan ( \theta)  \times  \cot( \theta)  \:  = \:  25 \\  \\ \sf \implies \:  \:  \tan^{2} ( \theta)  \:  +  \:  \cot^{2} ( \theta)  +  \:  \: 2 \times  \dfrac{ \sin( \theta) }{ \cos( \theta) }  \times \dfrac{ \cos( \theta) }{ \sin( \theta) } \:  = 25 \\  \\ \sf \implies \:  \:  \tan^{2} ( \theta)  \:  +  \:  \cot^{2} ( \theta)  +  \:  \: 2 \times 1 \times 1 \:  = \:  25 \\  \\ \sf \implies \:  \:  \tan^{2} ( \theta)  \:  +  \:  \cot^{2} ( \theta)  +  \:  \: 2  \:  =  \: 25 \\  \\ \sf \implies \:  \:  \tan^{2} ( \theta)  \:  +  \:  \cot^{2} ( \theta) \:    =  \: 25 - 2 \\  \\ \sf \implies \:  \:  \tan^{2} ( \theta)  \:  +  \:  \cot^{2} ( \theta)   \:  =  \: 23

ANSWER :

tan²θ + cot²θ = 23

Similar questions