Math, asked by SiddhiHarne, 3 months ago

12. If the angles of a quadrilateral are x, x + 30°,
2x - 30° and 2x, then the greatest angle is
(a) 136 (b) 90° (c) 60° (d) 120°
a regular​

Answers

Answered by rg2888115
1

Answer:

120

Give me like and best rating and follow for more questions and brainlisets

Answered by Anonymous
51

Correct Question :-

If the angles of a quadrilateral are x, x + 30°,2x - 30° and 2x, then the greatest angle is

(a) 136° (b) 90° (c) 60° (d) 120°

Solution :-

 \large{  \sf{ \underline{ We \:  know :-}}}

 \small{ \boxed{ \purple{ \sf{angle \: sum \: property \: of \: quadrilateral  = {360}^{o}}}}}

 \large{  \sf{ \underline{ Given :-}}}

Let the angles be x°, x + 30°,2x - 30° and 2x°

\large{  \sf{ \underline{ Now :-}}}

\small{  \sf{ \implies{x + x + 30 + 2x - 30 + 2x =  {360}^{o} }}}

\small{  \sf{ \implies{6x =  {360}^{o} }}}

\small{  \sf{ \implies{x =  \frac{360}{6}  }}}

\small{  \sf{ \implies{x =  {60}^{o}   }}}

\large{  \sf{ \underline{So :- }}}

\small{  \sf{ \purple{ \implies \: {x =  {60}^{o}   }}}}

\small{  \sf{ \purple{ \implies \: {x + 30 =  {60 + 30 =  {90}^{o}   }}}}}

\small{  \sf{ \purple{ \implies \: {2x + 30 =  {2 \times 60  -  30 =  {90}^{o}   }}}}}

 \small{  \sf{ \purple{ \implies\: {2x  = 2 \times 60 =  {120}^{o}}}}}

 \large{ \boxed{ \red{ \sf{ \therefore{greatest \: angle =  {120}^{o} }}}}}

_________________________

Verification :-

 \small{ \boxed{ \purple{ \sf{angle \: sum \: property \: of \: quadrilateral  = {360}^{o}}}}}

\small{  \sf{ \implies{60 + 90 + 90 + 120 =  {360}^{o} }}}

 \large{ \sf{ \therefore{ Hence \: proved }}}

__________________________

MARK BRAINLIEST ♡

Similar questions